scispace - formally typeset
Search or ask a question
Institution

University of Hamburg

EducationHamburg, Germany
About: University of Hamburg is a education organization based out in Hamburg, Germany. It is known for research contribution in the topics: Population & Laser. The organization has 45564 authors who have published 89286 publications receiving 2850161 citations. The organization is also known as: Hamburg University.


Papers
More filters
Journal ArticleDOI
21 Aug 2014-Nature
TL;DR: It is demonstrated that IDH1(R132H) contains an immunogenic epitope suitable for mutation-specific vaccination and Peptides encompassing the mutated region are presented on major histocompatibility complexes (MHC) class II and induce mutation- specific CD4+ T-helper-1 (TH1) responses.
Abstract: The mutant IDH1 protein, which is expressed in a large fraction of human gliomas, is shown to be immunogenic; mutant-specific immune responses can be detected in patients with IDH1 mutated gliomas and generated in mice and are shown to treat established IDH1 mutant tumours in a syngeneic MHC humanized mouse model in a CD4 T-cell-dependent manner. Isocitrate dehydrogenase type 1 (IDH1) point mutations are associated with certain slow-growing gliomas and other tumours. This study in a humanized syngeneic tumour mouse model shows that IDH1(R132H), the mutant IDH1 protein most commonly expressed in gliomas, is immunogenic, capable of inducing a human MHC class II-restricted spontaneous and functionally relevant immune response. These findings suggest that some patients with gliomas with a high prevalence of the IDH1(R132H) mutation may benefit from a tumour vaccine based on the IDH1(R132H) antigen. Monoallelic point mutations of isocitrate dehydrogenase type 1 (IDH1) are an early and defining event in the development of a subgroup of gliomas1,2,3 and other types of tumour4,5,6. They almost uniformly occur in the critical arginine residue (Arg 132) in the catalytic pocket, resulting in a neomorphic enzymatic function, production of the oncometabolite 2-hydroxyglutarate (2-HG)7,8, genomic hypermethylation9,10,11, genetic instability and malignant transformation12. More than 70% of diffuse grade II and grade III gliomas carry the most frequent mutation, IDH1(R132H) (ref. 3). From an immunological perspective, IDH1(R132H) represents a potential target for immunotherapy as it is a tumour-specific potential neoantigen with high uniformity and penetrance expressed in all tumour cells13,14. Here we demonstrate that IDH1(R132H) contains an immunogenic epitope suitable for mutation-specific vaccination. Peptides encompassing the mutated region are presented on major histocompatibility complexes (MHC) class II and induce mutation-specific CD4+ T-helper-1 (TH1) responses. CD4+ TH1 cells and antibodies spontaneously occurring in patients with IDH1(R132H)-mutated gliomas specifically recognize IDH1(R132H). Peptide vaccination of mice devoid of mouse MHC and transgenic for human MHC class I and II with IDH1(R132H) p123-142 results in an effective MHC class II-restricted mutation-specific antitumour immune response and control of pre-established syngeneic IDH1(R132H)-expressing tumours in a CD4+ T-cell-dependent manner. As IDH1(R132H) is present in all tumour cells of these slow-growing gliomas15, a mutation-specific anti-IDH1(R132H) vaccine may represent a viable novel therapeutic strategy for IDH1(R132H)-mutated tumours.

583 citations

Journal ArticleDOI
Arne May1
30 Jun 2008-Pain
TL;DR: The author suggests that the gray matter change observed in chronic pain patients are the consequence of frequent nociceptive input and should thus be reversible when pain is adequately treated.
Abstract: Recently, local morphologic alterations of the brain in areas ascribable to the transmission of pain were detected in patients suffering from phantom pain, chronic back pain, irritable bowl syndrome, fibromyalgia and two types of frequent headaches. These alterations were different for each pain syndrome, but overlapped in the cingulate cortex, the orbitofrontal cortex, the insula and dorsal pons. These regions function as multi-integrative structures during the experience and the anticipation of pain. As it seems that chronic pain patients have a common "brain signature" in areas known to be involved in pain regulation, the question arises whether these changes are the cause or the consequence of chronic pain. The author suggests that the gray matter change observed in chronic pain patients are the consequence of frequent nociceptive input and should thus be reversible when pain is adequately treated.

583 citations

Journal ArticleDOI
TL;DR: In the field of metallocene-based catalysis in olefin, diolefin and styrene polymerization, a great number of symmetric and chiral zirconocenes have been synthesized that give tailored polymers of totally different structures as discussed by the authors.
Abstract: Work in the field of application of metallocene-based catalysis in olefin, diolefin and styrene polymerization has become a research topic of growing interest in recent years. A great number of symmetric and chiral zirconocenes have been synthesized, that give tailored polymers of totally different structures. Single site catalysts have the capability of permitting the user to control polymer tacticity, molecular weight and molecular weight distribution more efficiently. Beside the homopolymers of polyethylene and poly(propylene), new kinds of copolymers and elastomers can be synthesized.

582 citations

Journal ArticleDOI
05 Mar 1992-Nature
TL;DR: The presence of CIC-2 in such different cell types contrasts with the highly specialized expression of ClC-1 and also with the cloned cation channels, and suggests that its function is important for most cells.
Abstract: Chloride channels have several functions, including the regulation of cell volume, stabilizing membrane potential, signal transduction and transepithelial transport. The plasma membrane Cl- channels already cloned belong to different structural classes: ligand-gated channels, voltage-gated channels, and possibly transporters of the ATP-binding-cassette type (if the cystic fibrosis transmembrane regulator is a Cl- channel). The importance of chloride channels is illustrated by the phenotypes that can result from their malfunction: cystic fibrosis, in which transepithelial transport is impaired, and myotonia, in which ClC-1, the principal skeletal muscle Cl- channel, is defective. Here we report the properties of ClC-2, a new member of the voltage-gated Cl- channel family. Its sequence is approximately 50% identical to either the Torpedo electroplax Cl- channel, ClC-0 (ref. 8), or the rat muscle Cl- channel, ClC-1 (ref. 9). Isolated initially from rat heart and brain, it is also expressed in pancreas, lung and liver, for example, and in pure cell lines of fibroblastic, neuronal, and epithelial origin, including tissues and cells affected by cystic fibrosis. Expression in Xenopus oocytes induces Cl- currents that activate slowly upon hyperpolarization and display a linear instantaneous current-voltage relationship. The conductivity sequence is Cl- greater than or equal to Br- greater than I-. The presence of ClC-2 in such different cell types contrasts with the highly specialized expression of ClC-1 (ref. 9) and also with the cloned cation channels, and suggests that its function is important for most cells.

582 citations

Journal ArticleDOI
TL;DR: In the polar regions, unique photochemistry converts inert halide salt ions (e.g. Br−) into reactive halogen species that deplete ozone in the boundary layer to near zero levels as discussed by the authors.
Abstract: . During springtime in the polar regions, unique photochemistry converts inert halide salt ions (e.g. Br−) into reactive halogen species (e.g. Br atoms and BrO) that deplete ozone in the boundary layer to near zero levels. Since their discovery in the late 1980s, research on ozone depletion events (ODEs) has made great advances; however many key processes remain poorly understood. In this article we review the history, chemistry, dependence on environmental conditions, and impacts of ODEs. This research has shown the central role of bromine photochemistry, but how salts are transported from the ocean and are oxidized to become reactive halogen species in the air is still not fully understood. Halogens other than bromine (chlorine and iodine) are also activated through incompletely understood mechanisms that are probably coupled to bromine chemistry. The main consequence of halogen activation is chemical destruction of ozone, which removes the primary precursor of atmospheric oxidation, and generation of reactive halogen atoms/oxides that become the primary oxidizing species. The different reactivity of halogens as compared to OH and ozone has broad impacts on atmospheric chemistry, including near complete removal and deposition of mercury, alteration of oxidation fates for organic gases, and export of bromine into the free troposphere. Recent changes in the climate of the Arctic and state of the Arctic sea ice cover are likely to have strong effects on halogen activation and ODEs; however, more research is needed to make meaningful predictions of these changes.

581 citations


Authors

Showing all 46072 results

NameH-indexPapersCitations
Rudolf Jaenisch206606178436
Bruce M. Psaty1811205138244
Stefan Schreiber1781233138528
Chris Sander178713233287
Dennis J. Selkoe177607145825
Daniel R. Weinberger177879128450
Ramachandran S. Vasan1721100138108
Bradley Cox1692150156200
Anders Björklund16576984268
J. S. Lange1602083145919
Hannes Jung1592069125069
Andrew D. Hamilton1511334105439
Jongmin Lee1502257134772
Teresa Lenz1501718114725
Stefanie Dimmeler14757481658
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

97% related

Heidelberg University
119.1K papers, 4.6M citations

97% related

Technische Universität München
123.4K papers, 4M citations

95% related

University of Bern
79.4K papers, 3.1M citations

94% related

University of Zurich
124K papers, 5.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023282
2022817
20215,784
20205,492
20194,994
20184,587