scispace - formally typeset
Search or ask a question
Institution

University of Hawaii at Manoa

EducationHonolulu, Hawaii, United States
About: University of Hawaii at Manoa is a education organization based out in Honolulu, Hawaii, United States. It is known for research contribution in the topics: Population & Sea surface temperature. The organization has 13693 authors who have published 25161 publications receiving 1023924 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The tropical oceans have long been recognized as the most important region for large-scale ocean-atmosphere interactions, giving rise to coupled climate variations on several time scales.
Abstract: The tropical oceans have long been recognized as the most important region for large-scale ocean–atmosphere interactions, giving rise to coupled climate variations on several time scales. During the Tropical Ocean Global Atmosphere (TOGA) decade, the focus of much tropical ocean research was on understanding El Nino–related processes and on development of tropical ocean models capable of simulating and predicting El Nino. These studies led to an appreciation of the vital role the ocean plays in providing the memory for predicting El Nino and thus making seasonal climate prediction feasible. With the end of TOGA and the beginning of Climate Variability and Prediction (CLIVAR), the scope of climate variability and predictability studies has expanded from the tropical Pacific and ENSO-centric basis to the global domain. In this paper the progress that has been made in tropical ocean climate studies during the early years of CLIVAR is discussed. The discussion is divided geographically into three tropical ocean basins with an emphasis on the dynamical processes that are most relevant to the coupling between the atmosphere and oceans. For the tropical Pacific, the continuing effort to improve understanding of large- and small-scale dynamics for the purpose of extending the skill of ENSO prediction is assessed. This paper then goes beyond the time and space scales of El Nino and discusses recent research activities on the fundamental issue of the processes maintaining the tropical thermocline. This includes the study of subtropical cells (STCs) and ventilated thermocline processes, which are potentially important to the understanding of the low-frequency modulation of El Nino. For the tropical Atlantic, the dominant oceanic processes that interact with regional atmospheric feedbacks are examined as well as the remote influence from both the Pacific El Nino and extratropical climate fluctuations giving rise to multiple patterns of variability distinguished by season and location. The potential impact of Atlantic thermohaline circulation on tropical Atlantic variability (TAV) is also discussed. For the tropical Indian Ocean, local and remote mechanisms governing low-frequency sea surface temperature variations are examined. After reviewing the recent rapid progress in the understanding of coupled dynamics in the region, this study focuses on the active role of ocean dynamics in a seasonally locked east–west internal mode of variability, known as the Indian Ocean dipole (IOD). Influences of the IOD on climatic conditions in Asia, Australia, East Africa, and Europe are discussed. While the attempt throughout is to give a comprehensive overview of what is known about the role of the tropical oceans in climate, the fact of the matter is that much remains to be understood and explained. The complex nature of the tropical coupled phenomena and the interaction among them argue strongly for coordinated and sustained observations, as well as additional careful modeling investigations in order to further advance the current understanding of the role of tropical oceans in climate.

234 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the causes of interannual to interdecadal variability of the East Asian (EA; 0°60°N, 100°-140°E) winter monsoon (EAWM) over the past 50 yr (1957-2006).
Abstract: This study investigates the causes of interannual-to-interdecadal variability of the East Asian (EA; 0°–60°N, 100°–140°E) winter monsoon (EAWM) over the past 50 yr (1957–2006). The winter mean surface air temperature variations are dominated by two distinct principal modes that together account for 74% of the total temperature variance. The two modes have notably different circulation structures and sources of variability. The northern mode, characterized by a westward shift of the EA major trough and enhanced surface pressure over central Siberia, represents a cold winter in the northern EA resulting from cold-air intrusion from central Siberia. The southern mode, on the other hand, features a deepening EA trough and increased surface pressure over Mongolia, representing a cold winter south of 40°N resulting from cold-air intrusion from western Mongolia. The cold northern mode is preceded by excessive autumn snow covers over southern Siberia–Mongolia, whereas the cold southern mode is preceded b...

234 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined changes in global monsoon precipitation over land reveals an overall weakening over the recent half-century (1950-2000), which is deducible from the atmosphere's response to the observed SST variations.
Abstract: Previous examination of changes in global monsoon precipitation over land reveals an overall weakening over the recent half-century (1950–2000). The present study suggests that this significant change in global land monsoon precipitation is deducible from the atmosphere’s response to the observed SST variations. When forced by historical sea surface temperatures covering the same period, the ensemble simulation with the NCAR Community Atmosphere Model, version 2 (CAM2) model successfully reproduced the weakening tendency of global land monsoon precipitation. This decreasing tendency was mainly caused by the warming trend over the central-eastern Pacific and the western tropical Indian Ocean. At the interannual time scale, the global land monsoon precipitation is closely correlated with ENSO. The simulated interannual variation of the global land monsoon index matches well with the observation, indicating that most monsoon precipitation variations arise from the ocean forcing. There are uncertaint...

234 citations

Journal ArticleDOI
TL;DR: In this article, the authors report the selection and spectroscopic confirmation of 129 new late-type (SpT = K3-M6) members of the Tucana-Horologium moving group, a nearby (d ~ 40 pc), young (τ ~ 40 Myr) population of comoving stars.
Abstract: We report the selection and spectroscopic confirmation of 129 new late-type (SpT = K3-M6) members of the Tucana-Horologium moving group, a nearby (d ~ 40 pc), young (τ ~ 40 Myr) population of comoving stars. We also report observations for 13 of the 17 known Tuc-Hor members in this spectral type range, and that 62 additional candidates are likely to be unassociated field stars; the confirmation frequency for new candidates is therefore 129/191 = 67%. We have used radial velocities, Hα emission, and Li6708 absorption to distinguish between contaminants and bona fide members. Our expanded census of Tuc-Hor increases the known population by a factor of ~3 in total and by a factor of ~8 for members with SpT ≥ K3, but even so, the K-M dwarf population of Tuc-Hor is still markedly incomplete. Our expanded census allows for a much more detailed study of Tuc-Hor than was previously feasible. The spatial distribution of members appears to trace a two-dimensional sheet, with a broad distribution in X and Y, but a very narrow distribution (±5 pc) in Z. The corresponding velocity distribution is very small, with a scatter of ±1.1 km s–1 about the mean UVW velocity for stars spanning the entire 50 pc extent of Tuc-Hor. We also show that the isochronal age (τ ~ 20-30 Myr) and the lithium depletion boundary age (τ ~ 40 Myr) disagree, following the trend in other pre-main-sequence populations for isochrones to yield systematically younger ages. The Hα emission line strength follows a trend of increasing equivalent width with later spectral type, as is seen for young clusters. We find that moving group members have been depleted of measurable lithium for spectral types of K7.0-M4.5. None of our targets have significant infrared excesses in the WISE W3 band, yielding an upper limit on warm debris disks of F 95% completeness for τ ~ 40 Myr populations with GALEX data available.

234 citations

Journal ArticleDOI
TL;DR: This article examined the narrated and embodied identities-in-practice of non-white, middle school girls who articulate future career goals in STEM-related fields for these girls who desire an STEMrelated career.
Abstract: The underrepresentation of non-White students and girls in STEM fields is an ongoing problem that is well documented In K-12 science education, girls, and especially non-White girls, often do not identify with science regardless of test scores In this study, we examine the narrated and embodied identities-in-practice of non-White, middle school girls who articulate future career goals in STEM-related fields For these girls who desire an STEM-related career, we examine the relationships between their narrated and embodied identities-in-practice Drawing on interview and ethnographic data in both school and after school science contexts, we examine how STEM-career minded middle school girls articulate and negotiate a path for themselves through their narratives and actions We present four types of relationships between girls' narrated and embodied identities-in-practice, each with a representative case study: (1) partial overlaps, (2) significant overlaps, (3) contrasting, and (4) transformative The implications of these relationships with regard to both hurdles and support structures that are needed to equip and empower girls in pursuit of their STEM trajectories are discussed © 2013 Wiley Periodicals, Inc J Res Sci Teach 50: 1143-1179, 2013

234 citations


Authors

Showing all 13867 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Steven N. Blair165879132929
Qiang Zhang1611137100950
Jack M. Guralnik14845383701
Thomas J. Smith1401775113919
James A. Richardson13636375778
Donna Neuberg13581072653
Jian Zhou128300791402
Eric F. Bell12863172542
Jorge Luis Rodriguez12883473567
Bin Wang126222674364
Nicholas J. Schork12558762131
Matthew Jones125116196909
Anthony F. Jorm12479867120
Adam G. Riess118363117310
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

93% related

University of California, San Diego
204.5K papers, 12.3M citations

92% related

Johns Hopkins University
249.2K papers, 14M citations

91% related

Cornell University
235.5K papers, 12.2M citations

91% related

Columbia University
224K papers, 12.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202362
2022244
20211,111
20201,164
20191,151
20181,154