scispace - formally typeset
Search or ask a question
Institution

University of Hawaii at Manoa

EducationHonolulu, Hawaii, United States
About: University of Hawaii at Manoa is a education organization based out in Honolulu, Hawaii, United States. It is known for research contribution in the topics: Population & Sea surface temperature. The organization has 13693 authors who have published 25161 publications receiving 1023924 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a classification of second-order superintegrable systems with scalar potentials and integrals of motion that are polynomials in the momenta is presented.
Abstract: A superintegrable system is, roughly speaking, a system that allows more integrals of motion than degrees of freedom. This review is devoted to finite dimensional classical and quantum superintegrable systems with scalar potentials and integrals of motion that are polynomials in the momenta. We present a classification of second-order superintegrable systems in two-dimensional Riemannian and pseudo-Riemannian spaces. It is based on the study of the quadratic algebras of the integrals of motion and on the equivalence of different systems under coupling constant metamorphosis. The determining equations for the existence of integrals of motion of arbitrary order in real Euclidean space $E_2$ are presented and partially solved for the case of third-order integrals. A systematic exposition is given of systems in two and higher dimensional space that allow integrals of arbitrary order. The algebras of integrals of motions are not necessarily quadratic but close polynomially or rationally. The relation between superintegrability and the classification of orthogonal polynomials is analyzed.

205 citations

Journal ArticleDOI
TL;DR: In this article, two ensemble simulations are carried out with an atmospheric general circulation model to investigate the mechanisms for the wind changes that cause this rapid oceanic cooling and its feedback onto the African monsoon.
Abstract: The seasonal cycle of equatorial Atlantic sea surface temperature (SST) is characterized by a rapid cooling from April to July, coinciding with the onset of the West African summer monsoon and followed by a slow warming that lasts 3 times longer. Two ensemble simulations are carried out with an atmospheric general circulation model to investigate the mechanisms for the wind changes that cause this rapid oceanic cooling and its feedback onto the African monsoon. In the control simulation, SST is globally prescribed in its full climatological seasonal cycle, while in the second simulation, equatorial Atlantic SST is held constant in time from 15 April onward. Comparison of these simulations indicates that the equatorial cooling exerts a significant influence on the African monsoon, intensifying the southerly winds in the Gulf of Guinea and pushing the continental rainband inland away from the Guinean coast. The intensification of the cross-equatorial southerlies associated with the onset of the African monsoon, in turn, triggers the oceanic cooling in the east. The equatorial easterlies are also important for the seasonal cooling by inducing local upwelling and raising the thermocline in the east. Three mechanisms are identified for the easterly wind acceleration in the equatorial Atlantic in boreal summer. First, the monsoon rainfall distribution is such that it induces zonal sea level pressure gradients and easterly anomalies in the eastern Atlantic. Second, the strong cross-equatorial southerlies advect the easterly momentum from the south into the equator. Finally, zonal pressure gradients associated with the equatorial ocean cooling accelerate surface easterly winds in the middle and western Atlantic. This interaction of equatorial SST and zonal wind causes their westward copropagation, analogous to that in the equatorial Pacific.

205 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the onset of the summer monsoon over the South China Sea (SCS) and the western North Pacific (WNP) and found that the onset anomaly exhibits an in-phase interannual variation across the entire WNP domain.
Abstract: Climatological summer monsoon onset over the South China Sea (SCS) and the western North Pacific (WNP) (defined as the region of 108‐208N, 1208‐1608E) displays three distinct stages. Around mid-May, monsoon rain commences in the SCS and the Philippines. In early to mid-June, the monsoon rain extends to the southwestern Philippine Sea. After mid-July, the rainy season starts in the northeastern part of the WNP. The onset anomaly, however, displays an in-phase interannual variation across the entire WNP domain. The standard deviation of the onset date increases eastward from 3 pentads in the SCS to 5 pentads in the northeastern part of the domain. The large onset variability in the WNP is mainly attributed to large year-to-year changes of the seasonal cycle. .

205 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of ductile deformation behavior of engineered cementitious composites (ECC) on the response of steel reinforced flexural members to lateral load reversals was investigated.
Abstract: Summarizes the results of research aimed at investigating the effect of ductile deformation behavior of engineered cementitious composites (ECC) on the response of steel reinforced flexural members to lateral load reversals. The combination of a ductile cementitious matrix and steel reinforcement is found to result in improved energy dissipation capacity, reduction of transverse steel reinforcement requirements, and damage-tolerant inelastic deformation behavior. Basic concepts and composite deformation mechanisms of steel reinforced ECC are provided, experimentally verified, and compared to conventional reinforced concrete using small-scale specimens. Results indicate advantageous synergistic effects between ECC matrix and steel reinforcement with respect to compatible deformation, structural composite integrity, and damage evolution, and suggest integrating advanced materials design into the structural design process.

205 citations

Journal ArticleDOI
TL;DR: Age was the strongest and most consistently associated factor to HCV prevalence and HCV RNA positivity and the study demonstrates the urgency to reduce HCV transmission in Egypt.
Abstract: Egypt has the highest prevalence of antibodies to hepatitis C virus (HCV) in the world, estimated nationally at 14.7%. An estimated 9.8% are chronically infected. Numerous HCV prevalence studies in Egypt have published various estimates from different Egyptian communities, suggesting that Egypt, relative to the other nations of the world, might be experiencing intense ongoing HCV transmission. More importantly, a new national study provided an opportunity to apply established epidemiologic models to estimate incidence. Validated mathematical models for estimating incidence from age-specific prevalence were used. All previous prevalence studies of HCV in Egypt were reviewed and used to estimate incidence provided that there was sufficient age-specific data required by the models. All reports of anti-HCV antibody prevalence were much higher than any single other national estimate. Age was the strongest and most consistently associated factor to HCV prevalence and HCV RNA positivity. It was not possible to establish a prior reference point for HCV prevalence or incidence to compare with the 2009 incidence estimates. The modeled incidence from the national study and collectively from the modeled incidence from the previous community studies was 6.9/1,000 [95% confidence interval (CI), 5.5–7.4] per person per year and 6.6/1,000 (95% CI, 5.1–7.0) per person per year, respectively. Projected to the age structure of the Egyptian population, more than 500,000 new HCV infections per year were estimated. Iatrogenic transmission is the most likely, underlining exposure to the ongoing transmission. The study demonstrates the urgency to reduce HCV transmission in Egypt.

205 citations


Authors

Showing all 13867 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Steven N. Blair165879132929
Qiang Zhang1611137100950
Jack M. Guralnik14845383701
Thomas J. Smith1401775113919
James A. Richardson13636375778
Donna Neuberg13581072653
Jian Zhou128300791402
Eric F. Bell12863172542
Jorge Luis Rodriguez12883473567
Bin Wang126222674364
Nicholas J. Schork12558762131
Matthew Jones125116196909
Anthony F. Jorm12479867120
Adam G. Riess118363117310
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

93% related

University of California, San Diego
204.5K papers, 12.3M citations

92% related

Johns Hopkins University
249.2K papers, 14M citations

91% related

Cornell University
235.5K papers, 12.2M citations

91% related

Columbia University
224K papers, 12.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202362
2022244
20211,111
20201,164
20191,151
20181,154