scispace - formally typeset
Search or ask a question
Institution

University of Hawaii at Manoa

EducationHonolulu, Hawaii, United States
About: University of Hawaii at Manoa is a education organization based out in Honolulu, Hawaii, United States. It is known for research contribution in the topics: Population & Sea surface temperature. The organization has 13693 authors who have published 25161 publications receiving 1023924 citations.


Papers
More filters
Journal ArticleDOI
10 May 2012-Nature
TL;DR: A luminous ultraviolet–optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696 is reported and it is determined that the disrupted star was a helium-rich stellar core, modulo a factor dependent on the mass and radius of the star disrupted.
Abstract: The flare of radiation from the tidal disruption and accretion of a star can be used as a marker for supermassive black holes that otherwise lie dormant and undetected in the centres of distant galaxies. Previous candidate flares have had declining light curves in good agreement with expectations, but with poor constraints on the time of disruption and the type of star disrupted, because the rising emission was not observed. Recently, two ‘relativistic’ candidate tidal disruption events were discovered, each of whose extreme X-ray luminosity and synchrotron radio emission were interpreted as the onset of emission from a relativistic jet. Here we report a luminous ultraviolet–optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696. The observed continuum is cooler than expected for a simple accreting debris disk, but the well-sampled rise and decay of the light curve follow the predicted mass accretion rate and can be modelled to determine the time of disruption to an accuracy of two days. The black hole has a mass of about two million solar masses, modulo a factor dependent on the mass and radius of the star disrupted. On the basis of the spectroscopic signature of ionized helium from the unbound debris, we determine that the disrupted star was a helium-rich stellar core.

488 citations

Book
29 Mar 2012
TL;DR: Supersymmetric models of particle physics predict new superpartner matter states for each particle in the Standard Model These superpartners will have wide ranging implications, from cosmology to observations at high energy accelerators, such as CERN's LHC as mentioned in this paper.
Abstract: Supersymmetric models of particle physics predict new superpartner matter states for each particle in the Standard Model These superpartners will have wide ranging implications, from cosmology to observations at high energy accelerators, such as CERN's LHC In this 2006 text, the authors develop the basic concepts of supersymmetry and show how it can be incorporated into a theoretical framework for describing unified theories of elementary particles They develop the technical tools of supersymmetry using four-component spinor notation familiar to high energy experimentalists and phenomenologists The text takes the reader from an abstract formalism to a straightforward recipe for writing supersymmetric gauge theories of particle physics, and ultimately to the calculations necessary for practical applications at colliders and in cosmology This is a comprehensive, practical and accessible introduction to supersymmetry for experimental and phenomenological particle physicists and graduate students Exercises and worked examples that clarify the material are interspersed throughout

482 citations

Journal ArticleDOI
Shahana Ahmed1, Gilles Thomas2, Maya Ghoussaini1, Catherine S. Healey1, Manjeet K. Humphreys1, Radka Platte1, Jonathan J. Morrison1, Melanie Maranian1, Karen A. Pooley1, Robert Luben1, Diana Eccles3, D. Gareth Evans4, Olivia Fletcher, Nichola Johnson, Isabel dos Santos Silva, Julian Peto, Michael R. Stratton5, Nazneen Rahman, Kevin B. Jacobs2, Kevin B. Jacobs6, Ross L. Prentice7, Garnet L. Anderson7, Aleksandar Rajkovic8, J. David Curb9, Regina G. Ziegler2, Christine D. Berg2, Saundra S. Buys10, Catherine A. McCarty11, Heather Spencer Feigelson12, Eugenia E. Calle12, Michael J. Thun12, W. Ryan Diver12, Stig E. Bojesen13, Børge G. Nordestgaard13, Henrik Flyger13, Thilo Dörk14, Peter Schürmann14, Peter Hillemanns14, Johann H. Karstens14, Natalia Bogdanova14, Natalia Antonenkova, Iosif V. Zalutsky, Marina Bermisheva14, S. A. Fedorova15, Elza Khusnutdinova, Daehee Kang16, Keun-Young Yoo16, Dong Young Noh16, Sei Hyun Ahn16, Peter Devilee17, Christi J. van Asperen17, R.A.E.M. Tollenaar17, Caroline Seynaeve18, Montserrat Garcia-Closas2, Jolanta Lissowska19, Louise A. Brinton2, Beata Peplonska20, Heli Nevanlinna21, Tuomas Heikkinen21, Kristiina Aittomäki21, Carl Blomqvist21, John L. Hopper22, Melissa C. Southey22, Letitia D. Smith23, Amanda B. Spurdle23, Marjanka K. Schmidt24, Annegien Broeks24, Richard van Hien24, Sten Cornelissen24, Roger L. Milne25, Gloria Ribas25, Anna González-Neira25, Javier Benitez25, Rita K. Schmutzler26, Barbara Burwinkel27, Barbara Burwinkel28, Claus R. Bartram28, Alfons Meindl29, Hiltrud Brauch30, Hiltrud Brauch31, Christina Justenhoven31, Christina Justenhoven30, Ute Hamann27, Jenny Chang-Claude27, Rebecca Hein27, Shan Wang-Gohrke32, Annika Lindblom33, Sara Margolin33, Arto Mannermaa34, Veli-Matti Kosma34, Vesa Kataja34, Janet E. Olson35, Xianshu Wang35, Zachary S. Fredericksen35, Graham G. Giles22, Graham G. Giles36, Gianluca Severi22, Gianluca Severi36, Laura Baglietto22, Laura Baglietto36, Dallas R. English25, Dallas R. English22, Susan E. Hankinson37, David G. Cox37, Peter Kraft37, Lars J. Vatten38, Kristian Hveem38, Merethe Kumle, Alice J. Sigurdson2, Michele M. Doody2, Parveen Bhatti2, Bruce H. Alexander39, Maartje J. Hooning18, Ans M.W. van den Ouweland18, Rogier A. Oldenburg18, Mieke Schutte18, Per Hall33, Kamila Czene33, Jianjun Liu40, Yuqing Li40, Angela Cox41, Graeme Elliott41, Ian W. Brock41, Malcolm W.R. Reed41, Chen-Yang Shen42, Chen-Yang Shen43, Jyh Cherng Yu44, Giu Cheng Hsu44, Shou Tung Chen, Hoda Anton-Culver45, Argyrios Ziogas45, Irene L. Andrulis46, Julia A. Knight46, Jonathan Beesley23, Ellen L. Goode35, Fergus J. Couch35, Georgia Chenevix-Trench23, Robert N. Hoover2, Bruce A.J. Ponder47, Bruce A.J. Ponder1, David J. Hunter37, Paul D.P. Pharoah1, Alison M. Dunning1, Stephen J. Chanock2, Douglas F. Easton1 
TL;DR: Strong evidence is found for additional susceptibility loci on 3p and 17q and potential causative genes include SLC4A7 and NEK10 on3p and COX11 on 17q.
Abstract: Genome-wide association studies (GWAS) have identified seven breast cancer susceptibility loci, but these explain only a small fraction of the familial risk of the disease. Five of these loci were identified through a two-stage GWAS involving 390 familial cases and 364 controls in the first stage, and 3,990 cases and 3,916 controls in the second stage. To identify additional loci, we tested over 800 promising associations from this GWAS in a further two stages involving 37,012 cases and 40,069 controls from 33 studies in the CGEMS collaboration and Breast Cancer Association Consortium. We found strong evidence for additional susceptibility loci on 3p (rs4973768: per-allele OR = 1.11, 95% CI = 1.08-1.13, P = 4.1 x 10(-23)) and 17q (rs6504950: per-allele OR = 0.95, 95% CI = 0.92-0.97, P = 1.4 x 10(-8)). Potential causative genes include SLC4A7 and NEK10 on 3p and COX11 on 17q.

480 citations

Journal ArticleDOI
TL;DR: Recent advances in biofuel cell technology have addressed deficiencies and include methods to increase lifetime and environmental stability, but remain limited by short lifetimes, low power densities and inefficient oxidation of fuels.

477 citations

Journal ArticleDOI
TL;DR: It is reported that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn2+ and Ni2+, which both permeate TR PM7 up to four times better than Ca2+.
Abstract: Trace metal ions such as Zn2+, Fe2+, Cu2+, Mn2+, and Co2+ are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca2+- and Mg2+-permeable cation channel, whose activity is regulated by intracellular Mg2+ and Mg2+·ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide–regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn2+ and Ni2+, which both permeate TRPM7 up to four times better than Ca2+. Similarly, native MagNuM currents are also able to support Zn2+ entry. Furthermore, TRPM7 allows other essential metals such as Mn2+ and Co2+ to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd2+, Ba2+, and Sr2+. Equimolar replacement studies substituting 10 mM Ca2+ with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn2+ ≈ Ni2+ >> Ba2+ > Co2+ > Mg2+ ≥ Mn2+ ≥ Sr2+ ≥ Cd2+ ≥ Ca2+, while trivalent ions such as La3+ and Gd3+ are not measurably permeable. With the exception of Mg2+, which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn2+, Co2+, or Ni2+ suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca2+ and Mg2+, suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.

475 citations


Authors

Showing all 13867 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Steven N. Blair165879132929
Qiang Zhang1611137100950
Jack M. Guralnik14845383701
Thomas J. Smith1401775113919
James A. Richardson13636375778
Donna Neuberg13581072653
Jian Zhou128300791402
Eric F. Bell12863172542
Jorge Luis Rodriguez12883473567
Bin Wang126222674364
Nicholas J. Schork12558762131
Matthew Jones125116196909
Anthony F. Jorm12479867120
Adam G. Riess118363117310
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

93% related

University of California, San Diego
204.5K papers, 12.3M citations

92% related

Johns Hopkins University
249.2K papers, 14M citations

91% related

Cornell University
235.5K papers, 12.2M citations

91% related

Columbia University
224K papers, 12.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202362
2022244
20211,111
20201,164
20191,151
20181,154