scispace - formally typeset
Search or ask a question
Institution

University of Hohenheim

EducationStuttgart, Germany
About: University of Hohenheim is a education organization based out in Stuttgart, Germany. It is known for research contribution in the topics: Population & Soil water. The organization has 8585 authors who have published 16406 publications receiving 567377 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This rye whole-genome sequence closes a gap in Triticeae genome research, and will be highly valuable for comparative genomics, functional studies and genome-based breeding in rye.
Abstract: Summary We report on a whole-genome draft sequence of rye (Secale cereale L.). Rye is a diploid Triticeae species closely related to wheat and barley, and an important crop for food and feed in Central and Eastern Europe. Through whole-genome shotgun sequencing of the 7.9-Gbp genome of the winter rye inbred line Lo7 we obtained a de novo assembly represented by 1.29 million scaffolds covering a total length of 2.8 Gbp. Our reference sequence represents nearly the entire low-copy portion of the rye genome. This genome assembly was used to predict 27 784 rye gene models based on homology to sequenced grass genomes. Through resequencing of 10 rye inbred lines and one accession of the wild relative S. vavilovii, we discovered more than 90 million single nucleotide variants and short insertions/deletions in the rye genome. From these variants, we developed the high-density Rye600k genotyping array with 600 843 markers, which enabled anchoring the sequence contigs along a high-density genetic map and establishing a synteny-based virtual gene order. Genotyping data were used to characterize the diversity of rye breeding pools and genetic resources, and to obtain a genome-wide map of selection signals differentiating the divergent gene pools. This rye whole-genome sequence closes a gap in Triticeae genome research, and will be highly valuable for comparative genomics, functional studies and genome-based breeding in rye.

182 citations

Journal ArticleDOI
TL;DR: Recent advances in necroptosis, pyroPTosis, and parthanatos are discussed, with a strong focus on the role of redox homeostasis in the regulation of these events.
Abstract: Macrophages are highly plastic cells of the innate immune system. Macrophages play central roles in immunity against microbes and contribute to a wide array of pathologies. The processes of macrophage activation and their functions have attracted considerable attention from life scientists. Although macrophages are highly resistant to many toxic stimuli, including oxidative stress, macrophage death has been reported in certain diseases, such as viral infections, tuberculosis, atherosclerotic plaque development, inflammation, and sepsis. While most studies on macrophage death focused on apoptosis, a significant body of data indicates that programmed necrotic cell death forms may be equally important modes of macrophage death. Three such regulated necrotic cell death modalities in macrophages contribute to different pathologies, including necroptosis, pyroptosis, and parthanatos. Various reactive oxygen and nitrogen species, such as superoxide, hydrogen peroxide, and peroxynitrite have been shown to act as triggers, mediators, or modulators in regulated necrotic cell death pathways. Here we discuss recent advances in necroptosis, pyroptosis, and parthanatos, with a strong focus on the role of redox homeostasis in the regulation of these events.

182 citations

Journal ArticleDOI
TL;DR: A trend toward increased efficiency of direct selection under LN conditions was evident with decreasing grain yield at LN, and variations in genotype x N as well as G x L x N level interaction variances were significant in most experiments.
Abstract: Maize (Zea mays L.) cultivars with improved N-use efficiency would be beneficial for low-input production systems. Our objective was to estimate quantitative genetic parameters to optimize breeding programs for improving productivity under low N levels. Results of 21 field experiments with European breeding materials belonging to the flint and dent gene pool are presented. The study was performed during 1989 and 1999 at several locations in typical maize growing regions of Germany and France. All experiments were conducted at high (HN) and low (LN, no N fertilizer applied) N levels. Average grain yield was reduced by 37% at LN compared with HN. Coefficients of genotypic correlation between HN and LN were variable with an average of r G = 0.74 for grain yield and generally high for grain dry matter content. For grain yield, analyses of variance were computed from relative data, where plot values were expressed as percentage of the trial mean. Variances caused by genotype (G), G x location (L) interaction, and error effects were higher at LN compared with HN, with similar heritabilities at both N levels. For the untransformed data, components of variance were higher at HN than at LN. Genotype x N as well as G x L x N level interaction variances were significant in most experiments. Efficiency of improvement of grain yield at LN through indirect selection at HN was 70% compared with direct selection at LN. A trend toward increased efficiency of direct selection under LN conditions was evident with decreasing grain yield at LN.

181 citations

Journal ArticleDOI
TL;DR: The present work provides the most comprehensive study on intraspecific variation of recombination rates and crossover interference strength in eukaryotes and should pave the way for precise identification of genes controlling recombinations rates in maize and other organisms.
Abstract: In sexually reproducing organisms, meiotic crossovers ensure the proper segregation of chromosomes and contribute to genetic diversity by shuffling allelic combinations. Such genetic reassortment is exploited in breeding to combine favorable alleles, and in genetic research to identify genetic factors underlying traits of interest via linkage or association-based approaches. Crossover numbers and distributions along chromosomes vary between species, but little is known about their intraspecies variation. Here, we report on the variation of recombination rates between 22 European maize inbred lines that belong to the Dent and Flint gene pools. We genotype 23 doubled-haploid populations derived from crosses between these lines with a 50 k-SNP array and construct high-density genetic maps, showing good correspondence with the maize B73 genome sequence assembly. By aligning each genetic map to the B73 sequence, we obtain the recombination rates along chromosomes specific to each population. We identify significant differences in recombination rates at the genome-wide, chromosome, and intrachromosomal levels between populations, as well as significant variation for genome-wide recombination rates among maize lines. Crossover interference analysis using a two-pathway modeling framework reveals a negative association between recombination rate and interference strength. To our knowledge, the present work provides the most comprehensive study on intraspecific variation of recombination rates and crossover interference strength in eukaryotes. Differences found in recombination rates will allow for selection of high or low recombining lines in crossing programs. Our methodology should pave the way for precise identification of genes controlling recombination rates in maize and other organisms.

181 citations

Journal ArticleDOI
TL;DR: A literature search on measured soil-derived greenhouse gas (GHG) fluxes under organic and non-organic management from farming system comparisons was conducted and followed by a meta-analysis, finding that emissions from conventionally managed soils seemed to be influenced mainly by total N inputs, whereas for organically managed soils other variables such as soil characteristics seem to be more important.

181 citations


Authors

Showing all 8665 results

NameH-indexPapersCitations
Robert J. Lefkowitz214860147995
Patrick O. Brown183755200985
Mark Stitt13245660800
Wolf B. Frommer10534530918
Muhammad Imran94305351728
Muhammad Farooq92134137533
Yakov Kuzyakov8766737050
Werner Goebel8536726106
Ismail Cakmak8424925991
Reinhold Carle8441824858
Michael Wink8393832658
Albrecht E. Melchinger8339823140
Tilman Grune8247930327
Volker Römheld7923120763
Klaus Becker7932027494
Network Information
Related Institutions (5)
Wageningen University and Research Centre
54.8K papers, 2.6M citations

96% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

94% related

University of Guelph
50.5K papers, 1.7M citations

92% related

United States Department of Agriculture
90.8K papers, 3.4M citations

88% related

Agricultural Research Service
58.6K papers, 2.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202344
2022161
20211,045
2020954
2019868
2018802