scispace - formally typeset
Search or ask a question
Institution

University of Hohenheim

EducationStuttgart, Germany
About: University of Hohenheim is a education organization based out in Stuttgart, Germany. It is known for research contribution in the topics: Population & Soil water. The organization has 8585 authors who have published 16406 publications receiving 567377 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The effects of different nutrient meals and a noncaloric viscous cellulose meal (control) on the motor activity of the canine jejunum were studied and the length of spread of contraction waves was the most important factor that influenced transit.

158 citations

Journal ArticleDOI
TL;DR: It is concluded that high Tre6P levels decrease sucrose levels by stimulating nitrate assimilation and anaplerotic synthesis of organic acids, thereby diverting photoassimilates away from sucrose to generate carbon skeletons and fixed nitrogen for amino acid synthesis.
Abstract: Trehalose 6-phosphate (Tre6P) is an essential signal metabolite in plants, linking growth and development to carbon metabolism. The sucrose-Tre6P nexus model postulates that Tre6P acts as both a signal and negative feedback regulator of sucrose levels. To test this model, short-term metabolic responses to induced increases in Tre6P levels were investigated in Arabidopsis thaliana plants expressing the Escherichia coli Tre6P synthase gene (otsA) under the control of an ethanol-inducible promoter. Increased Tre6P levels led to a transient decrease in sucrose content, post-translational activation of nitrate reductase and phosphoenolpyruvate carboxylase, and increased levels of organic and amino acids. Radio-isotope ((14)CO2) and stable isotope ((13)CO2) labelling experiments showed no change in the rates of photoassimilate export in plants with elevated Tre6P, but increased labelling of organic acids. We conclude that high Tre6P levels decrease sucrose levels by stimulating nitrate assimilation and anaplerotic synthesis of organic acids, thereby diverting photoassimilates away from sucrose to generate carbon skeletons and fixed nitrogen for amino acid synthesis. These results are consistent with the sucrose-Tre6P nexus model, and implicate Tre6P in coordinating carbon and nitrogen metabolism in plants.

157 citations

Journal ArticleDOI
TL;DR: It is shown that hybrid wheat breeding based on the identified heterotic pattern can boost grain yield through the exploitation of heterosis and enhance recurrent selection gain.
Abstract: Hybrid breeding promises to boost yield and stability. The single most important element in implementing hybrid breeding is the recognition of a high-yielding heterotic pattern. We have developed a three-step strategy for identifying heterotic patterns for hybrid breeding comprising the following elements. First, the full hybrid performance matrix is compiled using genomic prediction. Second, a high-yielding heterotic pattern is searched based on a developed simulated annealing algorithm. Third, the long-term success of the identified heterotic pattern is assessed by estimating the usefulness, selection limit, and representativeness of the heterotic pattern with respect to a defined base population. This three-step approach was successfully implemented and evaluated using a phenotypic and genomic wheat dataset comprising 1,604 hybrids and their 135 parents. Integration of metabolomic-based prediction was not as powerful as genomic prediction. We show that hybrid wheat breeding based on the identified heterotic pattern can boost grain yield through the exploitation of heterosis and enhance recurrent selection gain. Our strategy represents a key step forward in hybrid breeding and is relevant for self-pollinating crops, which are currently shifting from pure-line to high-yielding and resilient hybrid varieties.

157 citations

Journal ArticleDOI
TL;DR: In this paper, the dynamics of low-molecular-weight organic substances (LMWOS) fluxes (10 μm) in various pools (dissolved, sorbed, decomposed to CO2 and incorporated into microbial biomass) were described.
Abstract: Summary Low-molecular-weight organic substances (LMWOS) such as amino acids, sugars and carboxylates, are rapidly turned over in soil. Despite their importance, it remains unknown how the competition between microbial uptake and sorption to the soil matrix affects the LMWOS turnover in soil solution. This study describes the dynamics of LMWOS fluxes (10 μm) in various pools (dissolved, sorbed, decomposed to CO2 and incorporated into microbial biomass) and also assesses the LMWOS distribution in these pools over a very wide concentration range (0.01–1000 μm). Representatives of each LMWOS group (glucose for sugars, alanine for amino acids, acetate for carboxylates), uniformly 14 C-labelled, were added to sterilized or nonsterilized soil and analysed in different pools between 1 minute and 5.6 hours after addition. LMWOS were almost completely taken up by microorganisms within the first 30 minutes. Surprisingly, microbial uptake was much faster than the physicochemical sorption (estimated in sterilized soil), which needed 60 minutes to reach quasi-equilibrium for alanine and about 400 minutes for glucose. Only acetate sorption was instantaneous. At a concentration of 100 μm, microbial decomposition after 4.5 hours was greater for alanine (76.7 ± 1.1%) than for acetate (55.2 ± 0.9%) or glucose (28.5 ± 1.5%). In contrast, incorporation into microbial biomass was greater for glucose (59.8 ± 1.2%) than for acetate (23.4 ± 5.9%) or alanine (5.2 ± 2.8%). Between 10 and 500 μm, the pathways of the three LMWOS changed: at 500 μm, alanine and acetate were less mineralized and more was incorporated into microbial biomass than at 10 μm, while glucose incorporation decreased. Despite the fact that the LMWOS concentrations in soil solution were important for competition between sorption and microbial uptake, their fate in soil is mainly determined by microbial uptake and further microbial transformations. For these substances, which represent the three main groups of LMWOS in soil, the microbial uptake out-competes sorption.

157 citations

Journal ArticleDOI
TL;DR: In this article, three constructs, namely need for cognition, typical intellectual engagement, and openness for ideas, were investigated regarding discriminant validity regarding epistemic curiosity, the desire for knowledge that motivates individuals to learn new ideas, eliminate information-gaps, and solve intellectual problems.

157 citations


Authors

Showing all 8665 results

NameH-indexPapersCitations
Robert J. Lefkowitz214860147995
Patrick O. Brown183755200985
Mark Stitt13245660800
Wolf B. Frommer10534530918
Muhammad Imran94305351728
Muhammad Farooq92134137533
Yakov Kuzyakov8766737050
Werner Goebel8536726106
Ismail Cakmak8424925991
Reinhold Carle8441824858
Michael Wink8393832658
Albrecht E. Melchinger8339823140
Tilman Grune8247930327
Volker Römheld7923120763
Klaus Becker7932027494
Network Information
Related Institutions (5)
Wageningen University and Research Centre
54.8K papers, 2.6M citations

96% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

94% related

University of Guelph
50.5K papers, 1.7M citations

92% related

United States Department of Agriculture
90.8K papers, 3.4M citations

88% related

Agricultural Research Service
58.6K papers, 2.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202344
2022161
20211,045
2020954
2019868
2018802