scispace - formally typeset
Search or ask a question
Institution

University of Hohenheim

EducationStuttgart, Germany
About: University of Hohenheim is a education organization based out in Stuttgart, Germany. It is known for research contribution in the topics: Population & Soil water. The organization has 8585 authors who have published 16406 publications receiving 567377 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the role of organic phosphates and acid phosphatase in the rhizosphere in the P uptake by mycorrhizal roots of spruce trees grown on acid soils was investigated.
Abstract: Inorganic and organic phosphates (P) were measured in bulk soil, rhizosphere soil and mycorrhizal rhizoplane soil of Norway spruce. Various methods of P extraction and estimation were compared. In addition, acid phosphatase activity and mycelial hyphae length were determined. In soil solutions from various locations, about 50% (range 35%–65%) of the total P was present as organic P. Compared to the bulk soil, the concentrations of readily hydrolysable organic P were lower in the rhizosphere soil and in the rhizoplane soil; this difference was particularly marked in the humus layer. In contrast, the concentrations of inorganic P either remained unaffected or increased. A 2- to 2.5-fold increase was found in the activity of acid phosphatase in the rhizoplane soil in comparison to the bulk soil. There was a positive correlation (r = 0.83***) between phosphatase activity and the length of mycelial hyphae. The results stress the role of organic P and of acid phosphatase in the rhizosphere in the P uptake by mycorrhizal roots of spruce trees grown on acid soils.

144 citations

Journal ArticleDOI
TL;DR: In this paper, a meta-analysis of published field studies on cover crops and P cycling was conducted, focusing on plant-microbe interactions, and several distinct, simultaneous mechanisms of P benefits for the main crop were described.
Abstract: Phosphorus (P) is a limiting nutrient in many agroecosystems and costly fertilizer inputs can cause negative environmental impacts. Cover crops constitute a promising management option for sustainable intensification of agriculture. However, their interactions with the soil microbial community, which is a key driver of P cycling, and their effects on the following crop, have not yet been systematically assessed. We conducted a meta-analysis of published field studies on cover crops and P cycling, focusing on plant-microbe interactions. We describe several distinct, simultaneous mechanisms of P benefits for the main crop. Decomposition dynamics, governed by P concentration, are critical for the transfer of P from cover crop residues to the main crop. Cover crops may enhance the soil microbial community by providing a legacy of increased mycorrhizal abundance, microbial biomass P, and phosphatase activity. Cover crops are generally most effective in systems low in available P, and may access ‘unavailable’ P pools. However, their effects on P availability are difficult to detect by standard soil P tests, except for increases after the use of Lupinus sp. Agricultural management (i.e. cover crop species selection, tillage, fertilization) can improve cover crop effects. In summary, cover cropping has the potential to tighten nutrient cycling in agricultural systems under different conditions, increasing crop P nutrition and yield.

144 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the effect of several heat treatments (moist: lOO“C, 67% moisture; 130 and 160°C initial moisture 80%, dry: 130 and 16O”C, combination of moist and dry heating, 60 min followed by dry heating at160°C) on nutritive value and deleterious components of partially defatted (PD, about 23% residual oil) and defatted(D, about 1.5% residualoil) Jatropha meals were studied.

144 citations

Journal ArticleDOI
TL;DR: Innovative topics of Adaptive thermogenesis in humans are on its definition and assessment, its dynamics related to weight loss and its constitutional and neuro-endocrine determinants.
Abstract: Metabolic adaptation to weight changes relates to body weight control, obesity and malnutrition. Adaptive thermogenesis (AT) refers to changes in resting and non-resting energy expenditure (REE and nREE) which are independent from changes in fat-free mass (FFM) and FFM composition. AT differs in response to changes in energy balance. With negative energy balance, AT is directed towards energy sparing. It relates to a reset of biological defence of body weight and mainly refers to REE. After weight loss, AT of nREE adds to weight maintenance. During overfeeding, energy dissipation is explained by AT of the nREE component only. As to body weight regulation during weight loss, AT relates to two different set points with a settling between them. During early weight loss, the first set is related to depleted glycogen stores associated with the fall in insulin secretion where AT adds to meet brain’s energy needs. During maintenance of reduced weight, the second set is related to low leptin levels keeping energy expenditure low to prevent triglyceride stores getting too low which is a risk for some basic biological functions (e.g., reproduction). Innovative topics of AT in humans are on its definition and assessment, its dynamics related to weight loss and its constitutional and neuro-endocrine determinants.

144 citations

Journal ArticleDOI
TL;DR: Prenylated chalcones and flavonoids gained increasing attention not only in nutrition but also in cancer prevention because of their biological and molecular activities in humans, which have been extensively investigated in vitro or in preclinical studies.

144 citations


Authors

Showing all 8665 results

NameH-indexPapersCitations
Robert J. Lefkowitz214860147995
Patrick O. Brown183755200985
Mark Stitt13245660800
Wolf B. Frommer10534530918
Muhammad Imran94305351728
Muhammad Farooq92134137533
Yakov Kuzyakov8766737050
Werner Goebel8536726106
Ismail Cakmak8424925991
Reinhold Carle8441824858
Michael Wink8393832658
Albrecht E. Melchinger8339823140
Tilman Grune8247930327
Volker Römheld7923120763
Klaus Becker7932027494
Network Information
Related Institutions (5)
Wageningen University and Research Centre
54.8K papers, 2.6M citations

96% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

94% related

University of Guelph
50.5K papers, 1.7M citations

92% related

United States Department of Agriculture
90.8K papers, 3.4M citations

88% related

Agricultural Research Service
58.6K papers, 2.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202344
2022161
20211,045
2020954
2019868
2018802