scispace - formally typeset
Search or ask a question
Institution

University of Hohenheim

EducationStuttgart, Germany
About: University of Hohenheim is a education organization based out in Stuttgart, Germany. It is known for research contribution in the topics: Population & Soil water. The organization has 8585 authors who have published 16406 publications receiving 567377 citations.


Papers
More filters
Journal ArticleDOI
Tomi Akinyemiju1, Semaw Ferede Abera2, Semaw Ferede Abera3, Muktar Beshir Ahmed4, Noore Alam5, Noore Alam6, Mulubirhan Assefa Alemayohu7, Christine Allen8, Rajaa Al-Raddadi, Nelson Alvis-Guzman9, Yaw Ampem Amoako10, Al Artaman11, Tadesse Awoke Ayele12, Aleksandra Barac, Isabela M. Benseñor13, Adugnaw Berhane3, Zulfiqar A Bhutta14, Jacqueline Castillo-Rivas, Abdulaal A Chitheer, Jee-Young Choi15, Benjamin C Cowie, Lalit Dandona8, Lalit Dandona16, Rakhi Dandona8, Rakhi Dandona16, Subhojit Dey, Daniel Dicker8, Huyen Do Phuc17, Donatus U. Ekwueme18, Maysaa El Sayed Zaki, Florian Fischer19, Thomas Fürst20, Thomas Fürst21, Thomas Fürst22, Jamie Hancock8, Simon I. Hay8, Peter J. Hotez23, Peter J. Hotez24, Sun Ha Jee25, Amir Kasaeian26, Yousef Khader27, Young-Ho Khang15, G Anil Kumar16, Michael Kutz8, Heidi J. Larson28, Alan D. Lopez29, Alan D. Lopez8, Raimundas Lunevicius30, Raimundas Lunevicius31, Reza Malekzadeh26, Colm McAlinden, Toni Meier32, Walter Mendoza33, Ali H. Mokdad8, Maziar Moradi-Lakeh34, Gabriele Nagel35, Quyen Nguyen17, Grant Nguyen8, Felix Akpojene Ogbo36, George C Patton29, David M. Pereira37, Farshad Pourmalek38, Mostafa Qorbani, Amir Radfar39, Gholamreza Roshandel40, Joshua A. Salomon41, Juan Sanabria42, Juan Sanabria43, Benn Sartorius44, Maheswar Satpathy45, Maheswar Satpathy46, Monika Sawhney42, Sadaf G. Sepanlou26, Katya Anne Shackelford8, Hirbo Shore47, Jiandong Sun48, Desalegn Tadese Mengistu7, Roman Topór-Mądry49, Roman Topór-Mądry50, Bach Xuan Tran51, Bach Xuan Tran52, Kingsley N. Ukwaja, Vasiliy Victorovich Vlassov53, Stein Emil Vollset54, Stein Emil Vollset55, Theo Vos8, Tolassa Wakayo4, Elisabete Weiderpass56, Elisabete Weiderpass57, Andrea Werdecker, Naohiro Yonemoto58, Mustafa Z. Younis59, Mustafa Z. Younis41, Chuanhua Yu60, Zoubida Zaidi, Liguo Zhu18, Christopher J L Murray8, Mohsen Naghavi8, Christina Fitzmaurice8, Christina Fitzmaurice61 
University of Alabama at Birmingham1, University of Hohenheim2, College of Health Sciences, Bahrain3, Jimma University4, University of Queensland5, Queensland Government6, Mekelle University7, Institute for Health Metrics and Evaluation8, University of Cartagena9, Komfo Anokye Teaching Hospital10, University of Manitoba11, University of Gondar12, University of São Paulo13, Aga Khan University14, New Generation University College15, Public Health Foundation of India16, Duy Tan University17, Centers for Disease Control and Prevention18, Bielefeld University19, Imperial College London20, University of Basel21, Swiss Tropical and Public Health Institute22, Boston Children's Hospital23, Baylor College of Medicine24, Yonsei University25, Tehran University of Medical Sciences26, Jordan University of Science and Technology27, University of London28, University of Melbourne29, Aintree University Hospitals NHS Foundation Trust30, University of Liverpool31, Martin Luther University of Halle-Wittenberg32, United Nations Population Fund33, Iran University of Medical Sciences34, University of Ulm35, University of Sydney36, University of Porto37, University of British Columbia38, A.T. Still University39, Golestan University40, Harvard University41, Marshall University42, Case Western Reserve University43, University of KwaZulu-Natal44, Utkal University45, AIIMS, New Delhi46, Haramaya University47, Queensland University of Technology48, Jagiellonian University Medical College49, Wrocław Medical University50, Hanoi Medical University51, Johns Hopkins University52, National Research University – Higher School of Economics53, University of Bergen54, Norwegian Institute of Public Health55, University of Tromsø56, Karolinska Institutet57, Kyoto University58, Jackson State University59, Wuhan University60, University of Washington61
TL;DR: In this article, the authors report results of the Global Burden of Disease (GBD) 2015 study on primary liver cancer incidence, mortality, and disability-adjusted life-years (DALYs) for 195 countries or territories from 1990 to 2015, and present global, regional, and national estimates on the burden of liver cancer attributable to hepatitis B virus (HBV) and hepatitis C virus (HCV) infection and alcohol, and an “other” group that encompasses residual causes.
Abstract: Importance Liver cancer is among the leading causes of cancer deaths globally. The most common causes for liver cancer include hepatitis B virus (HBV) and hepatitis C virus (HCV) infection and alcohol use. Objective To report results of the Global Burden of Disease (GBD) 2015 study on primary liver cancer incidence, mortality, and disability-adjusted life-years (DALYs) for 195 countries or territories from 1990 to 2015, and present global, regional, and national estimates on the burden of liver cancer attributable to HBV, HCV, alcohol, and an “other” group that encompasses residual causes. Design, Settings, and Participants Mortality was estimated using vital registration and cancer registry data in an ensemble modeling approach. Single-cause mortality estimates were adjusted for all-cause mortality. Incidence was derived from mortality estimates and the mortality-to-incidence ratio. Through a systematic literature review, data on the proportions of liver cancer due to HBV, HCV, alcohol, and other causes were identified. Years of life lost were calculated by multiplying each death by a standard life expectancy. Prevalence was estimated using mortality-to-incidence ratio as surrogate for survival. Total prevalence was divided into 4 sequelae that were multiplied by disability weights to derive years lived with disability (YLDs). DALYs were the sum of years of life lost and YLDs. Main Outcomes and Measures Liver cancer mortality, incidence, YLDs, years of life lost, DALYs by etiology, age, sex, country, and year. Results There were 854 000 incident cases of liver cancer and 810 000 deaths globally in 2015, contributing to 20 578 000 DALYs. Cases of incident liver cancer increased by 75% between 1990 and 2015, of which 47% can be explained by changing population age structures, 35% by population growth, and −8% to changing age-specific incidence rates. The male-to-female ratio for age-standardized liver cancer mortality was 2.8. Globally, HBV accounted for 265 000 liver cancer deaths (33%), alcohol for 245 000 (30%), HCV for 167 000 (21%), and other causes for 133 000 (16%) deaths, with substantial variation between countries in the underlying etiologies. Conclusions and Relevance Liver cancer is among the leading causes of cancer deaths in many countries. Causes of liver cancer differ widely among populations. Our results show that most cases of liver cancer can be prevented through vaccination, antiviral treatment, safe blood transfusion and injection practices, as well as interventions to reduce excessive alcohol use. In line with the Sustainable Development Goals, the identification and elimination of risk factors for liver cancer will be required to achieve a sustained reduction in liver cancer burden. The GBD study can be used to guide these prevention efforts.

1,208 citations

Journal ArticleDOI
TL;DR: In this paper, a new radiocarbon calibration curve, IntCal04 and Marine04, has been constructed and internationally rati- fied to replace the terrestrial and marine components of IntCal98.
Abstract: New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally rati- fied to replace the terrestrial and marine components of IntCal98. The new calibration data sets extend an additional 2000 yr, from 0-26 cal kyr BP (Before Present, 0 cal BP = AD 1950), and provide much higher resolution, greater precision, and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically-dated tree-ring samples, converted with a box diffusion model to marine mixed-layer ages, cover the period from 0-10.5 cal kyr BP. Beyond 10.5 cal kyr BP, high-res- olution marine data become available from foraminifera in varved sediments and U/Th-dated corals. The marine records are corrected with site-specific 14C reservoir age information to provide a single global marine mixed-layer calibration from 10.5-26.0 cal kyr BP. A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the 14C age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring data sets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al. (this issue). ABSTRACT. New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally rati- fied to replace the terrestrial and marine components of IntCal98. The new calibration data sets extend an additional 2000 yr, from 0-26 cal kyr BP (Before Present, 0 cal BP = AD 1950), and provide much higher resolution, greater precision, and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically-dated tree-ring samples, converted with a box diffusion model to marine mixed-layer ages, cover the period from 0-10.5 cal kyr BP. Beyond 10.5 cal kyr BP, high-res- olution marine data become available from foraminifera in varved sediments and U/Th-dated corals. The marine records are corrected with site-specific 14C reservoir age information to provide a single global marine mixed-layer calibration from 10.5-26.0 cal kyr BP. A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the 14C age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring data sets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al. (this issue).

1,205 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight the potential of selected by-products as a source of functional compounds and highlight the benefits of using these byproducts as functional compounds in the context of food processing.
Abstract: There is a rapidly growing body of literature covering the role of plant secondary metabolites in food and their potential effects on human health. Furthermore, consumers are increasingly aware of diet related health problems, therefore demanding natural ingredients which are expected to be safe and health-promoting. By-products of plant food processing represent a major disposal problem for the industry concerned, but they are also promising sources of compounds which may be used because of their favourable technological or nutritional properties. The purpose of this review is to highlight the potential of selected by-products as a source of functional compounds.

1,196 citations

Journal ArticleDOI
TL;DR: Evidence is brought together to show that roots can directly regulate most aspects of rhizosphere C flow either by regulating the exudation process itself or by directly regulating the recapture of exudates from soil.
Abstract: The loss of carbon from roots (rhizodeposition) and the consequent proliferation of microorganisms in the surrounding soil, coupled with the physical presence of a root and processes associated with nutrient uptake, gives rise to a unique zone of soil called the rhizosphere. In this review, we bring together evidence to show that roots can directly regulate most aspects of rhizosphere C flow either by regulating the exudation process itself or by directly regulating the recapture of exudates from soil. Root exudates have been hypothesized to be involved in the enhanced mobilization and acquisition of many nutrients from soil or the external detoxification of metals. With few exceptions, there is little mechanistic evidence from soil-based systems to support these propositions. We conclude that much more integrated work in realistic systems is required to quantify the functional significance of these processes in the field. We need to further unravel the complexities of the rhizosphere in order to fully engage with key scientific ideas such as the development of sustainable agricultural systems and the response of ecosystems to climate change. Contents I. Introduction 460 II. What is rhizodeposition? 460 III. Regulation of rhizodeposition 460 IV. How large is the root exudation C flux? 463 V. How responsive is the root exudation C flux? 463 VI. How responsive is the microbial community to root exudation? 464 VII. The role of root exudates in nutrient acquisition 464 VIII. Mycorrhizal fungi and rhizodeposition 471 IX. Future thoughts 474 Acknowledgements 474 References 474.

1,190 citations

Journal ArticleDOI
TL;DR: Intestinal permeability, which is a feature of intestinal barrier function, is increasingly recognized as being of relevance for health and disease, and therefore, this topic warrants more attention.
Abstract: Data are accumulating that emphasize the important role of the intestinal barrier and intestinal permeability for health and disease. However, these terms are poorly defined, their assessment is a matter of debate, and their clinical significance is not clearly established. In the present review, current knowledge on mucosal barrier and its role in disease prevention and therapy is summarized. First, the relevant terms ‘intestinal barrier’ and ‘intestinal permeability’ are defined. Secondly, the key element of the intestinal barrier affecting permeability are described. This barrier represents a huge mucosal surface, where billions of bacteria face the largest immune system of our body. On the one hand, an intact intestinal barrier protects the human organism against invasion of microorganisms and toxins, on the other hand, this barrier must be open to absorb essential fluids and nutrients. Such opposing goals are achieved by a complex anatomical and functional structure the intestinal barrier consists of, the functional status of which is described by ‘intestinal permeability’. Third, the regulation of intestinal permeability by diet and bacteria is depicted. In particular, potential barrier disruptors such as hypoperfusion of the gut, infections and toxins, but also selected over-dosed nutrients, drugs, and other lifestyle factors have to be considered. In the fourth part, the means to assess intestinal permeability are presented and critically discussed. The means vary enormously and probably assess different functional components of the barrier. The barrier assessments are further hindered by the natural variability of this functional entity depending on species and genes as well as on diet and other environmental factors. In the final part, we discuss selected diseases associated with increased intestinal permeability such as critically illness, inflammatory bowel diseases, celiac disease, food allergy, irritable bowel syndrome, and – more recently recognized – obesity and metabolic diseases. All these diseases are characterized by inflammation that might be triggered by the translocation of luminal components into the host. In summary, intestinal permeability, which is a feature of intestinal barrier function, is increasingly recognized as being of relevance for health and disease, and therefore, this topic warrants more attention.

1,186 citations


Authors

Showing all 8665 results

NameH-indexPapersCitations
Robert J. Lefkowitz214860147995
Patrick O. Brown183755200985
Mark Stitt13245660800
Wolf B. Frommer10534530918
Muhammad Imran94305351728
Muhammad Farooq92134137533
Yakov Kuzyakov8766737050
Werner Goebel8536726106
Ismail Cakmak8424925991
Reinhold Carle8441824858
Michael Wink8393832658
Albrecht E. Melchinger8339823140
Tilman Grune8247930327
Volker Römheld7923120763
Klaus Becker7932027494
Network Information
Related Institutions (5)
Wageningen University and Research Centre
54.8K papers, 2.6M citations

96% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

94% related

University of Guelph
50.5K papers, 1.7M citations

92% related

United States Department of Agriculture
90.8K papers, 3.4M citations

88% related

Agricultural Research Service
58.6K papers, 2.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202344
2022161
20211,045
2020954
2019868
2018802