scispace - formally typeset
Search or ask a question
Institution

University of Hohenheim

EducationStuttgart, Germany
About: University of Hohenheim is a education organization based out in Stuttgart, Germany. It is known for research contribution in the topics: Population & Soil water. The organization has 8585 authors who have published 16406 publications receiving 567377 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown, that only the tracer methods provided adequate results for the whole below-ground C translocation, which included roots, exudates and other organic substances, quickly decomposable by soil microorganisms, and CO 2 produced by root respiration.
Abstract: The methods used for estimating below-ground carbon (C) translocation by plants, and the results obtained for different plant species are reviewed. Three tracer techniques using C isotopes to quantify root-derived C are discussed: pulse labeling, continuous labeling, and a method based on the difference in 13 C natural abundance in C3 and C4 plants. It is shown, that only the tracer methods provided adequate results for the whole below-ground C translocation. This included roots, exudates and other organic substances, quickly decomposable by soil microorganisms, and CO 2 produced by root respiration. Advantages due to coupling of two different tracer techniques are shown. The differences in the below-ground C translocation pattern between plant species (cereals, grasses, and trees) are discussed. Cereals (wheat and barley) transfer 20%-30% of total assimilated C into the soil. Half of this amount is subsequently found in the roots and about one-third in CO2 evolved from the soil by root respiration and microbial utilization of rootborne organic substances. The remaining part of below-ground translocated C is incorporated into the soil microorganisms and soil organic matter. The portion of assimilated C allocated below the ground by cereals decreases during growth and by increasing N fertilization. Pasture plants translocated about 30%-50% of assimilates below-ground, and their translocation patterns were similar to those of crop plants. On average, the total C amounts translocated into the soil by cereals and pasture plants are approximately the same (1500 kg C ha -1 ), when the same growth period is considered. However, during one vegetation period the cereals and grasses allocated beneath the ground about 1500 and 2200kg C ha -1 , respectively. Finally, a simple approach is suggested for a rough calculation of C input into the soil and for root-derived CO 2 efflux from the soil.

1,002 citations

Journal ArticleDOI
TL;DR: The majority of common small-scale polymorphisms as well as many larger insertions and deletions in the A. thaliana pan-genome are described, their effects on gene function, and the patterns of local and global linkage among these variants.
Abstract: The plant Arabidopsis thaliana occurs naturally in many different habitats throughout Eurasia. As a foundation for identifying genetic variation contributing to adaptation to diverse environments, a 1001 Genomes Project to sequence geographically diverse A. thaliana strains has been initiated. Here we present the first phase of this project, based on population-scale sequencing of 80 strains drawn from eight regions throughout the species' native range. We describe the majority of common small-scale polymorphisms as well as many larger insertions and deletions in the A. thaliana pan-genome, their effects on gene function, and the patterns of local and global linkage among these variants. The action of processes other than spontaneous mutation is identified by comparing the spectrum of mutations that have accumulated since A. thaliana diverged from its closest relative 10 million years ago with the spectrum observed in the laboratory. Recent species-wide selective sweeps are rare, and potentially deleterious mutations are more common in marginal populations.

965 citations

Journal ArticleDOI
TL;DR: In this paper, pyrogenic carbon or black carbon (BC) was used as an energy source for microorganisms to initiate cometabolic BC decomposition or intensive mixing of the soil to check the effect of mechanical disturbance of aggregates.
Abstract: Incomplete combustion of organics such as vegetation or fossil fuel led to accumulation of charred products in the upper soil horizon. Such charred products, frequently called pyrogenic carbon or black carbon (BC). may act as an important long-term carbon (C) sink because its microbial decomposition and chemical transformation is probably very slow. Direct estimations of BC decomposition rates are absent because the BC content changes are too small for any relevant experimental period. Estimations based on CO(2) efflux are also unsuitable because the contribution of BC to CO(2) is too small compared to soil organic matter (SOM) and other sources. We produced BC by charring (14)C labeled residues of perennial ryegrass (Latium perenne). We then incubated this (14)C labeled BC in Ah of a Haplic Luvisol soil originated from loess or in loess for 3.2 years. The decomposition rates of BC were estimated based on (14)CO(2) sampled 44 times during the 3.2 years incubation period (1181 days). Additionally we introduced five repeated treatments with either 1) addition of glucose as an energy source for microorganisms to initiate cometabolic BC decomposition or 2) intensive mixing of the soil to check the effect of mechanical disturbance of aggregates on BC decomposition. Black carbon addition amounting to 20% of C(org) of the soil or 200% of C(org) of loess did not change total CO(2) efflux from the soil and slightly decreased it from the loess. This shows a very low BC contribution to recent CO(2) fluxes. The decomposition rates of BC calculated based on 14C in CO(2) were similar in soil and in loess and amounted to 1.36 10-5 d(-1) (=1.36 10-3% d(-1)). This corresponds to a decomposition of about 0.5% BC per year under optimal conditions. Considering about 10 times slower decomposition of BC under natural conditions, the mean residence time (MRT) of BC is about 2000 years, and the half-life is about 1400 years. Considering the short duration of the incubation and the typical decreasing decomposition rates with time, we conclude that the MRT of BC in soils is in the range of millennia. The strong increase in BC decomposition rates (up to 6 times) after adding glucose and the decrease of this stimulation after 2 weeks in the soil (and after 3 months in loess) allowed us to conclude cometabolic BC decomposition. This was supported by higher stimulation of BC decomposition by glucose addition compared to mechanical disturbance as well as higher glucose effects in loess compared to the soil. The effect of mechanical disturbance was over within 2 weeks. The incorporation of BC into microorganisms (fumigation/extraction) after 624 days of incubation amounted to 2.6 and 1.5% of (14)C input into soil and loess, respectively. The amount of BC in dissolved organic carbon (DOC) was below the detection limit (<0.01%) showing no BC decomposition products in water leached from the soil. We conclude that applying (14)C labeled BC opens new ways for very sensitive tracing of BC transformation products in released CO(2), microbial biomass, DOC, and SOM pools with various properties. (C) 2008 Elsevier Ltd. All rights reserved.

943 citations

Journal ArticleDOI
TL;DR: The results of a collaborative integrated work which aims to characterize the trichothecene genotypes of strains from three Fusarium species, collected over the period 2000–2013 and to enhance the standardization of epidemiological data collection were described.
Abstract: Fusarium species, particularly Fusarium graminearum and F. culmorum, are the main cause of trichothecene type B contamination in cereals. Data on the distribution of Fusarium trichothecene genotypes in cereals in Europe are scattered in time and space. Furthermore, a common core set of related variables (sampling method, host cultivar, previous crop, etc.) that would allow more effective analysis of factors influencing the spatial and temporal population distribution, is lacking. Consequently, based on the available data, it is difficult to identify factors influencing chemotype distribution and spread at the European level. Here we describe the results of a collaborative integrated work which aims (1) to characterize the trichothecene genotypes of strains from three Fusarium species, collected over the period 2000–2013 and (2) to enhance the standardization of epidemiological data collection. Information on host plant, country of origin, sampling location, year of sampling and previous crop of 1147 F. graminearum, 479 F. culmorum, and 3 F. cortaderiae strains obtained from 17 European countries was compiled and a map of trichothecene type B genotype distribution was plotted for each species. All information on the strains was collected in a freely accessible and updatable database (www.catalogueeu.luxmcc.lu), which will serve as a starting point for epidemiological analysis of potential spatial and temporal trichothecene genotype shifts in Europe. The analysis of the currently available European dataset showed that in F. graminearum, the predominant genotype was 15-acetyldeoxynivalenol (15-ADON) (82.9%), followed by 3-acetyldeoxynivalenol (3-ADON) (13.6%), and nivalenol (NIV) (3.5%). In F. culmorum, the prevalent genotype was 3-ADON (59.9%), while the NIV genotype accounted for the remaining 40.1%. Both, geographical and temporal patterns of trichothecene genotypes distribution were identified.

936 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize progress with respect to different approaches to isolate, extract, and quantify organomineral compounds from soils, types of mineral surfaces and associated interactions, the distribution and function of soil biota at organo-mineral surfaces, and factors controlling the turnover of organic matter (OM) in organic matter associations from temperate soils.
Abstract: We summarize progress with respect to (1) different approaches to isolate, extract, and quantify organo-mineral compounds from soils, (2) types of mineral surfaces and associated interactions, (3) the distribution and function of soil biota at organo-mineral surfaces, (4) the distribution and content of organo-mineral associations, and (5) the factors controlling the turnover of organic matter (OM) in organo-mineral associations from temperate soils. Physical fractionation achieves a rough separation between plant residues and mineral-associated OM, which makes density or particle-size fractionation a useful pretreatment for further differentiation of functional fractions. A part of the OM in organo-mineral associations resists different chemical treatments, but the data obtained cannot readily be compared among each other, and more research is necessary on the processes underlying resistance to treatments for certain OM components. Studies using physical-fractionation procedures followed by soil-microbiological analyses revealed that organo-mineral associations spatially isolate C sources from soil biota, making quantity and quality of OM in microhabitats an important factor controlling community composition. The distribution and activity of soil microorganisms at organo-mineral surfaces can additionally be modified by faunal activities. Composition of OM in organo-mineral associations is highly variable, with loamy soils having generally a higher contribution of polysaccharides, whereas mineral-associated OM in sandy soils is often more aliphatic. Though highly reactive towards Fe oxide surfaces, lignin and phenolic components are usually depleted in organo-mineral associations. Charred OM associated with the mineral surface contributes to a higher aromaticity in heavy fractions. The relative proportion of OC bound in organo-mineral fractions increases with soil depth. Likewise does the strength of the bonding. Organic molecules sorbed to the mineral surfaces or precipitated by Al are effectively stabilized, indicated by reduced susceptibility towards oxidative attack, higher thermal stability, and lower bioavailability. At higher surface loading, organic C is much better bioavailable, also indicated by little 14C age. In the subsurface horizons of the soils investigated in this study, Fe oxides seem to be the most important sorbents, whereas phyllosilicate surfaces may be comparatively more important in topsoils. Specific surface area of soil minerals is not always a good predictor for C-stabilization potentials because surface coverage is discontinuous. Recalcitrance and accessibility/aggregation seem to determine the turnover dynamics in fast and intermediate cycling OM pools, but for long-term OC preservation the interactions with mineral surfaces, and especially with Fe oxide surfaces, are a major control in all soils investigated here.

928 citations


Authors

Showing all 8665 results

NameH-indexPapersCitations
Robert J. Lefkowitz214860147995
Patrick O. Brown183755200985
Mark Stitt13245660800
Wolf B. Frommer10534530918
Muhammad Imran94305351728
Muhammad Farooq92134137533
Yakov Kuzyakov8766737050
Werner Goebel8536726106
Ismail Cakmak8424925991
Reinhold Carle8441824858
Michael Wink8393832658
Albrecht E. Melchinger8339823140
Tilman Grune8247930327
Volker Römheld7923120763
Klaus Becker7932027494
Network Information
Related Institutions (5)
Wageningen University and Research Centre
54.8K papers, 2.6M citations

96% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

94% related

University of Guelph
50.5K papers, 1.7M citations

92% related

United States Department of Agriculture
90.8K papers, 3.4M citations

88% related

Agricultural Research Service
58.6K papers, 2.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202344
2022161
20211,045
2020954
2019868
2018802