scispace - formally typeset
Search or ask a question
Institution

University of Houston

EducationHouston, Texas, United States
About: University of Houston is a education organization based out in Houston, Texas, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 23074 authors who have published 53903 publications receiving 1641968 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used a within-subject correlational design to assess mean level differences in students' task value, selfefficacy, test anxiety, cognitive strategy use, regulatory strategy use and classroom academic performance by gender and across the subject areas of mathematics, social studies, and English.
Abstract: Recent research on self-regulated learning has stressed the importance of both motivational and cognitive components of classroom learning. Much of this research has examined these components without consideration of potential contextual differences. Using a within-subject correlational design, the present study assessed mean level differences in students' task value, self-efficacy, test anxiety, cognitive strategy use, regulatory strategy use, and classroom academic performance by gender and across the subject areas of mathematics, social studies, and English. In addition, the relations among the motivational, strategy use, and performance measures were assessed using multivariate regressions. The participants were 545 seventh and eighth grade students (51% females) who responded to a self-report questionnaire. Results revealed mean level differences by subject area and gender in the motivation and cognitive strategy use variables, but not in regulatory strategy use or academic performance. In contrast, results indicated that the relations among these constructs was very similar across the three subject areas examined. Findings are discussed in terms of their importance for understanding the contextual nature of students' self-regulated learning.

572 citations

Journal ArticleDOI
TL;DR: A three-dimensional core-shell metal-nitride catalyst consisting of NiFeN nanoparticles uniformly decorated on NiMoN nanorods supported on Ni foam serves as an eminently active and durable oxygen evolution reaction catalyst for alkaline seawater electrolysis.
Abstract: Seawater is one of the most abundant natural resources on our planet. Electrolysis of seawater is not only a promising approach to produce clean hydrogen energy, but also of great significance to seawater desalination. The implementation of seawater electrolysis requires robust and efficient electrocatalysts that can sustain seawater splitting without chloride corrosion, especially for the anode. Here we report a three-dimensional core-shell metal-nitride catalyst consisting of NiFeN nanoparticles uniformly decorated on NiMoN nanorods supported on Ni foam, which serves as an eminently active and durable oxygen evolution reaction catalyst for alkaline seawater electrolysis. Combined with an efficient hydrogen evolution reaction catalyst of NiMoN nanorods, we have achieved the industrially required current densities of 500 and 1000 mA cm−2 at record low voltages of 1.608 and 1.709 V, respectively, for overall alkaline seawater splitting at 60 °C. This discovery significantly advances the development of seawater electrolysis for large-scale hydrogen production. Seawater electrolysis is a promising approach to produce hydrogen fuel and is also of great significance to seawater desalination. Here, the authors prepare 3D core-shell metal-nitride catalysts from earth-abundant elements for high-performance alkaline seawater electrolysis.

572 citations

Journal ArticleDOI
03 Jun 2011-Science
TL;DR: Sign epistasis was rare in this genome-wide study, in contrast to its prevalence in an earlier study of mutations in a single gene, which supported models in which negative epistasis contributes to declining rates of adaptation over time.
Abstract: Epistatic interactions between mutations play a prominent role in evolutionary theories. Many studies have found that epistasis is widespread, but they have rarely considered beneficial mutations. We analyzed the effects of epistasis on fitness for the first five mutations to fix in an experimental population of Escherichia coli. Epistasis depended on the effects of the combined mutations--the larger the expected benefit, the more negative the epistatic effect. Epistasis thus tended to produce diminishing returns with genotype fitness, although interactions involving one particular mutation had the opposite effect. These data support models in which negative epistasis contributes to declining rates of adaptation over time. Sign epistasis was rare in this genome-wide study, in contrast to its prevalence in an earlier study of mutations in a single gene.

568 citations

Journal ArticleDOI
TL;DR: In this paper, the melt-state linear viscoelastic properties for a series of intercalated nanocomposites are examined and the linear dynamic oscillatory moduli and the stress relaxation moduli are in quantitative agreement and suggest that at short times the relaxation of the nanocom composites is essentially unaffected by the presence of layered-silicate.
Abstract: The melt-state linear viscoelastic properties for a series of intercalated nanocomposites are examined. The nanocomposites are based on a short disordered polystyrene−polyisoprene diblock copolymer and varying amounts of dimethyldioctadecylammonium modified montmorillonite. The linear dynamic oscillatory moduli and the stress relaxation moduli are in quantitative agreement and suggest that at short times the relaxation of the nanocomposites is essentially unaffected by the presence of the layered-silicate. However, at long times (or equivalently low frequency), the hybrids exhibit dramatically altered viscoelastic behavior. Hybrids with silicate loadings in excess of 6.7 wt % exhibit pseudo-solidlike behavior, similar to that observed in previous studies of exfoliated end-tethered nanocomposites. On the basis of simple phenomenological arguments, the long time behavior is attributed to the presence of anisotropic stacks of silicate sheets randomly oriented and forming a percolated network structure that i...

566 citations

Journal ArticleDOI
18 Jun 1979
TL;DR: In this paper, an improvement to a recently reported theory for the analysis of the pattern and impedance loci of microstrip antennas is developed, which yields a theory which is simple and inexpensive to apply.
Abstract: An improvement to a recently reported theory for the analysis of the pattern and impedance loci of microstrip antennas is developed. It yields a theory which is simple and inexpensive to apply. The fields in the interior of the antennas are characterized in terms of a discrete set of modes. The poles corresponding to these modes are complex and depend on the losses in the antenna. The representation of the fields in terms of these modes is rigorous only for a bona fide cavity with no copper loss. The proper shift in the complex poles due to the addition of copper and radiative losses is approximated by lumping the latter two together with the dielectric loss to form an effective loss tangent. By so doing, it is found that the resulting expressions for impedance of the microstrip antenna are in good agreement with measured results for all modes and feed locations. The theory is applied to the evaluation of impedance variation with feed location, to multiport analysis, and to the design of circularly polarized microstrip antennas.

565 citations


Authors

Showing all 23345 results

NameH-indexPapersCitations
Matthew Meyerson194553243726
Gad Getz189520247560
Eric Boerwinkle1831321170971
Pulickel M. Ajayan1761223136241
Zhenan Bao169865106571
Marc Weber1672716153502
Steven N. Blair165879132929
Martin Karplus163831138492
Dongyuan Zhao160872106451
Xiang Zhang1541733117576
Jan-Åke Gustafsson147105898804
James M. Tour14385991364
Guanrong Chen141165292218
Naomi J. Halas14043582040
Antonios G. Mikos13869470204
Network Information
Related Institutions (5)
University of Texas at Austin
206.2K papers, 9M citations

95% related

University of Southern California
169.9K papers, 7.8M citations

94% related

Texas A&M University
164.3K papers, 5.7M citations

93% related

Pennsylvania State University
196.8K papers, 8.3M citations

93% related

University of California, Irvine
113.6K papers, 5.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022440
20213,031
20203,072
20192,806
20182,568