scispace - formally typeset
Search or ask a question

Showing papers by "University of Illinois at Urbana–Champaign published in 2016"


Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations


Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations


Journal ArticleDOI
Haidong Wang1, Mohsen Naghavi1, Christine Allen1, Ryan M Barber1  +841 moreInstitutions (293)
TL;DR: The Global Burden of Disease 2015 Study provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015, finding several countries in sub-Saharan Africa had very large gains in life expectancy, rebounding from an era of exceedingly high loss of life due to HIV/AIDS.

4,804 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +970 moreInstitutions (114)
TL;DR: This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Abstract: We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4+0.7−0.9×10−22. The inferred source-frame initial black hole masses are 14.2+8.3−3.7M⊙ and 7.5+2.3−2.3M⊙ and the final black hole mass is 20.8+6.1−1.7M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440+180−190 Mpc corresponding to a redshift 0.09+0.03−0.04. All uncertainties define a 90 % credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

3,448 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%.
Abstract: We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%. The bulk of this improvement comes from new near-infrared (NIR) observations of Cepheid variables in 11 host galaxies of recent type Ia supernovae (SNe Ia), more than doubling the sample of reliable SNe Ia having a Cepheid-calibrated distance to a total of 19, these in turn leverage the magnitude-redshift relation based on ∼300 SNe Ia at z < 0.15. All 19 hosts as well as the megamaser system NGC 4258 have been observed with WFC3 in the optical and NIR, thus nullifying cross-instrument zeropoint errors in the relative distance estimates from Cepheids. Other noteworthy improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC 4258, a larger sample of Cepheids in the Large Magellanic Cloud (LMC), a more robust distance to the LMC based on late-type detached eclipsing binaries (DEBs), HST observations of Cepheids in M31, and new HST-based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC 4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes measured with HST/FGS, HST/WFC3 spatial scanning and/or Hipparcos, and (iv) 2 DEBs in M31. The Hubble constant from each is 72.25 ± 2.51, 72.04 ± 2.67, 76.18 ± 2.37, and 74.50 ± 3.27 km s(−)(1) Mpc(−)(1), respectively. Our best estimate of H (0) = 73.24 ± 1.74 km s(−)(1) Mpc(−)(1) combines the anchors NGC 4258, MW, and LMC, yielding a 2.4% determination (all quoted uncertainties include fully propagated statistical and systematic components). This value is 3.4σ higher than 66.93 ± 0.62 km s(−)(1) Mpc(−)(1) predicted by ΛCDM with 3 neutrino flavors having a mass of 0.06 eV and the new Planck data, but the discrepancy reduces to 2.1σ relative to the prediction of 69.3 ± 0.7 km s(−)(1) Mpc(−)(1) based on the comparably precise combination of WMAP+ACT+SPT+BAO observations, suggesting that systematic uncertainties in CMB radiation measurements may play a role in the tension. If we take the conflict between Planck high-redshift measurements and our local determination of H (0) at face value, one plausible explanation could involve an additional source of dark radiation in the early universe in the range of ΔN (eff) ≈ 0.4–1. We anticipate further significant improvements in H (0) from upcoming parallax measurements of long-period MW Cepheids.

2,228 citations


Journal ArticleDOI
TL;DR: In this article, a review of the classification schemes of both fully gapped and gapless topological materials is presented, and a pedagogical introduction to the field of topological band theory is given.
Abstract: In recent years an increasing amount of attention has been devoted to quantum materials with topological characteristics that are robust against disorder and other perturbations. In this context it was discovered that topological materials can be classified with respect to their dimension and symmetry properties. This review provides an overview of the classification schemes of both fully gapped and gapless topological materials and gives a pedagogical introduction into the field of topological band theory.

2,123 citations


Journal ArticleDOI
TL;DR: In this article, a plant-inspired shape morphing system is presented, where a composite hydrogel architecture is encoded with localized, anisotropic swelling behavior controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways.
Abstract: Shape-morphing systems can be found in many areas, including smart textiles, autonomous robotics, biomedical devices, drug delivery and tissue engineering. The natural analogues of such systems are exemplified by nastic plant motions, where a variety of organs such as tendrils, bracts, leaves and flowers respond to environmental stimuli (such as humidity, light or touch) by varying internal turgor, which leads to dynamic conformations governed by the tissue composition and microstructural anisotropy of cell walls. Inspired by these botanical systems, we printed composite hydrogel architectures that are encoded with localized, anisotropic swelling behaviour controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways. When combined with a minimal theoretical framework that allows us to solve the inverse problem of designing the alignment patterns for prescribed target shapes, we can programmably fabricate plant-inspired architectures that change shape on immersion in water, yielding complex three-dimensional morphologies.

2,122 citations


Journal ArticleDOI
University of East Anglia1, University of Oslo2, Commonwealth Scientific and Industrial Research Organisation3, University of Exeter4, Oak Ridge National Laboratory5, National Oceanic and Atmospheric Administration6, Woods Hole Research Center7, University of California, San Diego8, Karlsruhe Institute of Technology9, Cooperative Institute for Marine and Atmospheric Studies10, Centre national de la recherche scientifique11, University of Maryland, College Park12, National Institute of Water and Atmospheric Research13, Woods Hole Oceanographic Institution14, Flanders Marine Institute15, Alfred Wegener Institute for Polar and Marine Research16, Netherlands Environmental Assessment Agency17, University of Illinois at Urbana–Champaign18, Leibniz Institute of Marine Sciences19, Max Planck Society20, University of Paris21, Hobart Corporation22, University of Bern23, Oeschger Centre for Climate Change Research24, National Center for Atmospheric Research25, University of Miami26, Council of Scientific and Industrial Research27, University of Colorado Boulder28, National Institute for Environmental Studies29, Joint Institute for the Study of the Atmosphere and Ocean30, Geophysical Institute, University of Bergen31, Goddard Space Flight Center32, Montana State University33, University of New Hampshire34, Bjerknes Centre for Climate Research35, Imperial College London36, Lamont–Doherty Earth Observatory37, Auburn University38, Wageningen University and Research Centre39, VU University Amsterdam40, Met Office41
TL;DR: In this article, the authors quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community.
Abstract: . Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006–2015), EFF was 9.3 ± 0.5 GtC yr−1, ELUC 1.0 ± 0.5 GtC yr−1, GATM 4.5 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 3.1 ± 0.9 GtC yr−1. For year 2015 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1, showing a slowdown in growth of these emissions compared to the average growth of 1.8 % yr−1 that took place during 2006–2015. Also, for 2015, ELUC was 1.3 ± 0.5 GtC yr−1, GATM was 6.3 ± 0.2 GtC yr−1, SOCEAN was 3.0 ± 0.5 GtC yr−1, and SLAND was 1.9 ± 0.9 GtC yr−1. GATM was higher in 2015 compared to the past decade (2006–2015), reflecting a smaller SLAND for that year. The global atmospheric CO2 concentration reached 399.4 ± 0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in EFF with +0.2 % (range of −1.0 to +1.8 %) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of EFF in 2016, the growth rate in atmospheric CO2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink (SLAND) in response to El Nino conditions of 2015–2016. From this projection of EFF and assumed constant ELUC for 2016, cumulative emissions of CO2 will reach 565 ± 55 GtC (2075 ± 205 GtCO2) for 1870–2016, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quere et al., 2015b, a, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center ( doi:10.3334/CDIAC/GCP_2016 ).

1,224 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy3  +978 moreInstitutions (112)
TL;DR: The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers as discussed by the authors.
Abstract: The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to 100M⊙ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range 9−240Gpc−3yr−1. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections.

1,172 citations


Journal ArticleDOI
Aysu Okbay1, Jonathan P. Beauchamp2, Mark Alan Fontana3, James J. Lee4  +293 moreInstitutions (81)
26 May 2016-Nature
TL;DR: In this article, the results of a genome-wide association study (GWAS) for educational attainment were reported, showing that single-nucleotide polymorphisms associated with educational attainment disproportionately occur in genomic regions regulating gene expression in the fetal brain.
Abstract: Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.

1,102 citations


Posted Content
TL;DR: This work proposes the Learning without Forgetting method, which uses only new task data to train the network while preserving the original capabilities, and performs favorably compared to commonly used feature extraction and fine-tuning adaption techniques.
Abstract: When building a unified vision system or gradually adding new capabilities to a system, the usual assumption is that training data for all tasks is always available. However, as the number of tasks grows, storing and retraining on such data becomes infeasible. A new problem arises where we add new capabilities to a Convolutional Neural Network (CNN), but the training data for its existing capabilities are unavailable. We propose our Learning without Forgetting method, which uses only new task data to train the network while preserving the original capabilities. Our method performs favorably compared to commonly used feature extraction and fine-tuning adaption techniques and performs similarly to multitask learning that uses original task data we assume unavailable. A more surprising observation is that Learning without Forgetting may be able to replace fine-tuning with similar old and new task datasets for improved new task performance.

Journal ArticleDOI
Nabila Aghanim1, Monique Arnaud2, M. Ashdown3, J. Aumont1  +291 moreInstitutions (73)
TL;DR: In this article, the authors present the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties.
Abstract: This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlationfunctions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (l< 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the ΛCDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, n_s, is confirmed smaller than unity at more than 5σ from Planck alone. We further validate the robustness of the likelihood results against specific extensions to the baseline cosmology, which are particularly sensitive to data at high multipoles. For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck’s wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline ΛCDM cosmology this requires τ = 0.078 ± 0.019 for the reionization optical depth, which is significantly lower than estimates without the use of high-frequency data for explicit monitoring of dust emission. At high multipoles we detect residual systematic errors in E polarization, typically at the μK^2 level; we therefore choose to retain temperature information alone for high multipoles as the recommended baseline, in particular for testing non-minimal models. Nevertheless, the high-multipole polarization spectra from Planck are already good enough to enable a separate high-precision determination of the parameters of the ΛCDM model, showing consistency with those established independently from temperature information alone.

Journal ArticleDOI
Juanita A. Haagsma1, Nicholas Graetz1, Ian Bolliger1, Mohsen Naghavi1, Hideki Higashi1, Erin C Mullany1, Semaw Ferede Abera2, Jerry Puthenpurakal Abraham3, Koranteng Adofo4, Ubai Alsharif5, Emmanuel A. Ameh6, Walid Ammar, Carl Abelardo T. Antonio7, Lope H Barrero8, Tolesa Bekele9, Dipan Bose10, Alexandra Brazinova, Ferrán Catalá-López, Lalit Dandona1, Rakhi Dandona11, Paul I. Dargan12, Diego De Leo13, Louisa Degenhardt14, Sarah Derrett15, Samath D Dharmaratne16, Tim Driscoll17, Leilei Duan18, Sergey Petrovich Ermakov19, Farshad Farzadfar20, Valery L. Feigin21, Richard C. Franklin22, Belinda J. Gabbe23, Richard A. Gosselin24, Nima Hafezi-Nejad20, Randah R. Hamadeh25, Martha Híjar, Guoqing Hu26, Sudha Jayaraman27, Guohong Jiang, Yousef Khader28, Ejaz Ahmad Khan29, Sanjay Krishnaswami30, Chanda Kulkarni, Fiona Lecky31, Ricky Leung32, Raimundas Lunevicius33, Ronan A Lyons34, Marek Majdan, Amanda J. Mason-Jones35, Richard Matzopoulos36, Peter A. Meaney37, Wubegzier Mekonnen38, Ted R. Miller39, Charles Mock40, Rosana E. Norman41, Ricardo Orozco, Suzanne Polinder, Farshad Pourmalek42, Vafa Rahimi-Movaghar20, Amany H. Refaat43, David Rojas-Rueda, Nobhojit Roy44, David C. Schwebel45, Amira Shaheen46, Saeid Shahraz47, Vegard Skirbekk48, Kjetil Søreide49, Sergey Soshnikov, Dan J. Stein50, Bryan L. Sykes51, Karen M. Tabb52, Awoke Misganaw Temesgen, Eric Y. Tenkorang53, Alice Theadom21, Bach Xuan Tran54, Bach Xuan Tran55, Tommi Vasankari, Monica S. Vavilala40, Vasiliy Victorovich Vlassov56, Solomon Meseret Woldeyohannes57, Paul S. F. Yip58, Naohiro Yonemoto, Mustafa Z. Younis59, Chuanhua Yu60, Christopher J L Murray1, Theo Vos1 
Institute for Health Metrics and Evaluation1, College of Health Sciences, Bahrain2, Harvard University3, Kwame Nkrumah University of Science and Technology4, Charité5, Ahmadu Bello University6, University of the Philippines Manila7, Pontifical Xavierian University8, Madawalabu University9, World Bank10, Public Health Foundation of India11, Guy's and St Thomas' NHS Foundation Trust12, Griffith University13, University of New South Wales14, Massey University15, University of Peradeniya16, University of Sydney17, Chinese Center for Disease Control and Prevention18, Russian Academy of Sciences19, Tehran University of Medical Sciences20, Auckland University of Technology21, James Cook University22, Monash University23, University of California, San Francisco24, Arabian Gulf University25, Central South University26, Virginia Commonwealth University27, Jordan University of Science and Technology28, Health Services Academy29, Oregon Health & Science University30, University of Sheffield31, University at Albany, SUNY32, Aintree University Hospitals NHS Foundation Trust33, Swansea University34, University of York35, South African Medical Research Council36, Children's Hospital of Philadelphia37, Addis Ababa University38, Curtin University39, University of Washington40, Queensland University of Technology41, University of British Columbia42, Suez Canal University43, Karolinska Institutet44, University of Alabama at Birmingham45, An-Najah National University46, Tufts Medical Center47, Norwegian Institute of Public Health48, Stavanger University Hospital49, University of Cape Town50, University of California, Irvine51, University of Illinois at Urbana–Champaign52, St. John's University53, Hanoi Medical University54, Johns Hopkins University55, National Research University – Higher School of Economics56, University of Gondar57, University of Hong Kong58, Jackson State University59, Wuhan University60
TL;DR: An overview of injury estimates from the 2013 update of GBD is provided, with detailed information on incidence, mortality, DALYs and rates of change from 1990 to 2013 for 26 causes of injury, globally, by region and by country.
Abstract: Background The Global Burden of Diseases (GBD), Injuries, and Risk Factors study used the disability-adjusted life year (DALY) to quantify the burden of diseases, injuries, and risk factors. This paper provides an overview of injury estimates from the 2013 update of GBD, with detailed information on incidence, mortality, DALYs and rates of change from 1990 to 2013 for 26 causes of injury, globally, by region and by country. Methods Injury mortality was estimated using the extensive GBD mortality database, corrections for ill-defined cause of death and the cause of death ensemble modelling tool. Morbidity estimation was based on inpatient and outpatient data sets, 26 cause-of-injury and 47 nature-of-injury categories, and seven follow-up studies with patient-reported long-term outcome measures. Results In 2013, 973 million (uncertainty interval (UI) 942 to 993) people sustained injuries that warranted some type of healthcare and 4.8 million (UI 4.5 to 5.1) people died from injuries. Between 1990 and 2013 the global age-standardised injury DALY rate decreased by 31% (UI 26% to 35%). The rate of decline in DALY rates was significant for 22 cause-of-injury categories, including all the major injuries. Conclusions Injuries continue to be an important cause of morbidity and mortality in the developed and developing world. The decline in rates for almost all injuries is so prominent that it warrants a general statement that the world is becoming a safer place to live in. However, the patterns vary widely by cause, age, sex, region and time and there are still large improvements that need to be made.

Journal ArticleDOI
18 Nov 2016-Science
TL;DR: The bioengineering of an accelerated response to natural shading events in Nicotiana (tobacco) is described, resulting in increased leaf carbon dioxide uptake and plant dry matter productivity by about 15% in fluctuating light.
Abstract: Crop leaves in full sunlight dissipate damaging excess absorbed light energy as heat. When sunlit leaves are shaded by clouds or other leaves, this protective dissipation continues for many minutes and reduces photosynthesis. Calculations have shown that this could cost field crops up to 20% of their potential yield. Here, we describe the bioengineering of an accelerated response to natural shading events in Nicotiana (tobacco), resulting in increased leaf carbon dioxide uptake and plant dry matter productivity by about 15% in fluctuating light. Because the photoprotective mechanism that has been altered is common to all flowering plants and crops, the findings provide proof of concept for a route to obtaining a sustainable increase in productivity for food crops and a much-needed yield jump.

Journal ArticleDOI
TL;DR: A flexible microfluidic device that adheres to human skin that collects and analyzes sweat during exercise and could be used during athletic or military training and adapted to test other bodily fluids such as tears or saliva is developed.
Abstract: Capabilities in health monitoring enabled by capture and quantitative chemical analysis of sweat could complement, or potentially obviate the need for, approaches based on sporadic assessment of blood samples. Established sweat monitoring technologies use simple fabric swatches and are limited to basic analysis in controlled laboratory or hospital settings. We present a collection of materials and device designs for soft, flexible, and stretchable microfluidic systems, including embodiments that integrate wireless communication electronics, which can intimately and robustly bond to the surface of the skin without chemical and mechanical irritation. This integration defines access points for a small set of sweat glands such that perspiration spontaneously initiates routing of sweat through a microfluidic network and set of reservoirs. Embedded chemical analyses respond in colorimetric fashion to markers such as chloride and hydronium ions, glucose, and lactate. Wireless interfaces to digital image capture hardware serve as a means for quantitation. Human studies demonstrated the functionality of this microfluidic device during fitness cycling in a controlled environment and during long-distance bicycle racing in arid, outdoor conditions. The results include quantitative values for sweat rate, total sweat loss, pH, and concentration of chloride and lactate.

Journal ArticleDOI
Sergey Alekhin, Wolfgang Altmannshofer1, Takehiko Asaka2, Brian Batell3, Fedor Bezrukov4, Kyrylo Bondarenko5, Alexey Boyarsky5, Ki-Young Choi6, Cristóbal Corral7, Nathaniel Craig8, David Curtin9, Sacha Davidson10, Sacha Davidson11, André de Gouvêa12, Stefano Dell'Oro, Patrick deNiverville13, P. S. Bhupal Dev14, Herbi K. Dreiner15, Marco Drewes16, Shintaro Eijima17, Rouven Essig18, Anthony Fradette13, Björn Garbrecht16, Belen Gavela19, Gian F. Giudice3, Mark D. Goodsell20, Mark D. Goodsell21, Dmitry Gorbunov22, Stefania Gori1, Christophe Grojean23, Alberto Guffanti24, Thomas Hambye25, Steen Honoré Hansen24, Juan Carlos Helo26, Juan Carlos Helo7, Pilar Hernández27, Alejandro Ibarra16, Artem Ivashko5, Artem Ivashko28, Eder Izaguirre1, Joerg Jaeckel29, Yu Seon Jeong30, Felix Kahlhoefer, Yonatan Kahn31, Andrey Katz3, Andrey Katz32, Andrey Katz33, Choong Sun Kim30, Sergey Kovalenko7, Gordan Krnjaic1, Valery E. Lyubovitskij34, Valery E. Lyubovitskij35, Valery E. Lyubovitskij36, Simone Marcocci, Matthew McCullough3, David McKeen37, Guenakh Mitselmakher38, Sven Moch39, Rabindra N. Mohapatra9, David E. Morrissey40, Maksym Ovchynnikov28, Emmanuel A. Paschos, Apostolos Pilaftsis14, Maxim Pospelov13, Maxim Pospelov1, Mary Hall Reno41, Andreas Ringwald, Adam Ritz13, Leszek Roszkowski, Valery Rubakov, Oleg Ruchayskiy17, Oleg Ruchayskiy24, Ingo Schienbein42, Daniel Schmeier15, Kai Schmidt-Hoberg, Pedro Schwaller3, Goran Senjanovic43, Osamu Seto44, Mikhail Shaposhnikov17, Lesya Shchutska38, J. Shelton45, Robert Shrock18, Brian Shuve1, Michael Spannowsky46, Andrew Spray47, Florian Staub3, Daniel Stolarski3, Matt Strassler33, Vladimir Tello, Francesco Tramontano48, Anurag Tripathi, Sean Tulin49, Francesco Vissani, Martin Wolfgang Winkler15, Kathryn M. Zurek50, Kathryn M. Zurek51 
Perimeter Institute for Theoretical Physics1, Niigata University2, CERN3, University of Connecticut4, Leiden University5, Korea Astronomy and Space Science Institute6, Federico Santa María Technical University7, University of California, Santa Barbara8, University of Maryland, College Park9, University of Lyon10, Claude Bernard University Lyon 111, Northwestern University12, University of Victoria13, University of Manchester14, University of Bonn15, Technische Universität München16, École Polytechnique Fédérale de Lausanne17, Stony Brook University18, Autonomous University of Madrid19, Centre national de la recherche scientifique20, University of Paris21, Moscow Institute of Physics and Technology22, Autonomous University of Barcelona23, University of Copenhagen24, Université libre de Bruxelles25, University of La Serena26, University of Valencia27, Taras Shevchenko National University of Kyiv28, Heidelberg University29, Yonsei University30, Princeton University31, University of Geneva32, Harvard University33, Tomsk Polytechnic University34, Tomsk State University35, University of Tübingen36, University of Washington37, University of Florida38, University of Hamburg39, TRIUMF40, University of Iowa41, University of Grenoble42, International Centre for Theoretical Physics43, Hokkai Gakuen University44, University of Illinois at Urbana–Champaign45, Durham University46, University of Melbourne47, University of Naples Federico II48, York University49, University of California, Berkeley50, Lawrence Berkeley National Laboratory51
TL;DR: It is demonstrated that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.
Abstract: This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, $\tau \to 3\mu $ and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals—scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.

Journal ArticleDOI
TL;DR: The strongest evidence was found for improvements in physical self-perceptions, which accompanied enhanced self-esteem in the majority of studies measuring these outcomes, and few studies examined neurobiological and behavioral mechanisms, and was unable to draw conclusions regarding their role in enhancing cognitive and mental health.
Abstract: CONTEXT: Physical activity can improve cognitive and mental health, but the underlying mechanisms have not been established. OBJECTIVE: To present a conceptual model explaining the mechanisms for the effect of physical activity on cognitive and mental health in young people and to conduct a systematic review of the evidence. DATA SOURCES: Six electronic databases (PubMed, PsycINFO, SCOPUS, Ovid Medline, SportDiscus, and Embase) were used. STUDY SELECTION: School-, home-, or community-based physical activity intervention or laboratory-based exercise interventions were assessed. Studies were eligible if they reported statistical analyses of changes in the following: (1) cognition or mental health; and (2) neurobiological, psychosocial, and behavioral mechanisms. DATA EXTRACTION: Data relating to methods, assessment period, participant characteristics, intervention type, setting, and facilitator/delivery were extracted. RESULTS: Twenty-five articles reporting results from 22 studies were included. Mechanisms studied were neurobiological (6 studies), psychosocial (18 studies), and behavioral (2 studies). Significant changes in at least 1 potential neurobiological mechanism were reported in 5 studies, and significant effects for at least 1 cognitive outcome were also found in 5 studies. One of 2 studies reported a significant effect for self-regulation, but neither study reported a significant impact on mental health. LIMITATIONS: Small number of studies and high levels of study heterogeneity. CONCLUSIONS: The strongest evidence was found for improvements in physical self-perceptions, which accompanied enhanced self-esteem in the majority of studies measuring these outcomes. Few studies examined neurobiological and behavioral mechanisms, and we were unable to draw conclusions regarding their role in enhancing cognitive and mental health.

Journal ArticleDOI
TL;DR: An analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season yields an upper limit r_{0.05}<0.09 at 95% confidence, which is robust to variations explored in analysis and priors.
Abstract: We present results from an analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season. This includes the first Keck Array observations at 95 GHz. The maps reach a depth of 50 nK deg in Stokes Q and U in the 150 GHz band and 127 nK deg in the 95 GHz band. We take auto- and cross-spectra between these maps and publicly available maps from WMAP and Planck at frequencies from 23 to 353 GHz. An excess over lensed ΛCDM is detected at modest significance in the 95×150 BB spectrum, and is consistent with the dust contribution expected from our previous work. No significant evidence for synchrotron emission is found in spectra such as 23×95, or for correlation between the dust and synchrotron sky patterns in spectra such as 23×353. We take the likelihood of all the spectra for a multicomponent model including lensed ΛCDM, dust, synchrotron, and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r ) using priors on the frequency spectral behaviors of dust and synchrotron emission from previous analyses of WMAP and Planck data in other regions of the sky. This analysis yields an upper limit r_(0.05) <0.09 at 95% confidence, which is robust to variations explored in analysis and priors. Combining these B-mode results with the (more model-dependent) constraints from Planck analysis of CMB temperature plus baryon acoustic oscillations and other data yields a combined limit r_(0.05) <0.07 at 95% confidence. These are the strongest constraints to date on inflationary gravitational waves.

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +301 moreInstitutions (72)
TL;DR: In this paper, the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario were studied, and it was shown that the density of DE at early times has to be below 2% of the critical density, even when forced to play a role for z < 50.
Abstract: We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below ~2% (at 95% confidence) of the critical density, even when forced to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ΛCDM. When testing models that also change perturbations (even when the background is fixed to ΛCDM), some tensions appear in a few scenarios: the maximum one found is ~2σ for Planck TT+lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to, at most, 3σ when external data sets are included. It however disappears when including CMB lensing.

Journal ArticleDOI
TL;DR: In this article, the production of the lightest nuclides from H to Li during the first seconds of cosmic time was analyzed using new precision cosmic microwave background measurements from the Planck satellite and observational abundance data.
Abstract: How do we understand the production of the lightest nuclides from H to Li during the first seconds of cosmic time? This article reviews recent developments based on new precision cosmic microwave background measurements from the Planck satellite and observational abundance data. Utilizing updated input on nuclear reactions and the neutron lifetime as well as limits on the baryon density of the Universe obtained from Planck data leads to a number of neutrino flavors.

Journal ArticleDOI
Fengpeng An1, Guangpeng An, Qi An2, Vito Antonelli3  +226 moreInstitutions (55)
TL;DR: The Jiangmen Underground Neutrino Observatory (JUNO) as mentioned in this paper is a 20kton multi-purpose underground liquid scintillator detector with the determination of neutrino mass hierarchy (MH) as a primary physics goal.
Abstract: The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3–4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters ${\mathrm{sin}}^{2}{\theta }_{12}$, ${\rm{\Delta }}{m}_{21}^{2}$, and $| {\rm{\Delta }}{m}_{{ee}}^{2}| $ to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ∼5000 inverse-beta-decay events and ∼2000 all-flavor neutrino–proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations. Detection of neutrinos from all past core-collapse supernova explosions in the visible universe with JUNO would further provide valuable information on the cosmic star-formation rate and the average core-collapse neutrino energy spectrum. Antineutrinos originating from the radioactive decay of uranium and thorium in the Earth can be detected in JUNO with a rate of ∼400 events per year, significantly improving the statistics of existing geoneutrino event samples. Atmospheric neutrino events collected in JUNO can provide independent inputs for determining the MH and the octant of the ${\theta }_{23}$ mixing angle. Detection of the (7)Be and (8)B solar neutrino events at JUNO would shed new light on the solar metallicity problem and examine the transition region between the vacuum and matter dominated neutrino oscillations. Regarding light sterile neutrino topics, sterile neutrinos with ${10}^{-5}\,{{\rm{eV}}}^{2}\lt {\rm{\Delta }}{m}_{41}^{2}\lt {10}^{-2}\,{{\rm{eV}}}^{2}$ and a sufficiently large mixing angle ${\theta }_{14}$ could be identified through a precise measurement of the reactor antineutrino energy spectrum. Meanwhile, JUNO can also provide us excellent opportunities to test the eV-scale sterile neutrino hypothesis, using either the radioactive neutrino sources or a cyclotron-produced neutrino beam. The JUNO detector is also sensitive to several other beyondthe-standard-model physics. Examples include the search for proton decay via the $p\to {K}^{+}+\bar{ u }$ decay channel, search for neutrinos resulting from dark-matter annihilation in the Sun, search for violation of Lorentz invariance via the sidereal modulation of the reactor neutrino event rate, and search for the effects of non-standard interactions. The proposed construction of the JUNO detector will provide a unique facility to address many outstanding crucial questions in particle and astrophysics in a timely and cost-effective fashion. It holds the great potential for further advancing our quest to understanding the fundamental properties of neutrinos, one of the building blocks of our Universe.

Journal ArticleDOI
TL;DR: In this paper, the authors conducted genome-wide association studies of three phenotypes: subjective well-being (n = 298,420), depressive symptoms (n= 161,460), and neuroticism(n = 170,911).
Abstract: Very few genetic variants have been associated with depression and neuroticism, likely because of limitations on sample size in previous studies. Subjective well-being, a phenotype that is genetically correlated with both of these traits, has not yet been studied with genome-wide data. We conducted genome-wide association studies of three phenotypes: subjective well-being (n = 298,420), depressive symptoms (n = 161,460), and neuroticism (n = 170,911). We identify 3 variants associated with subjective well-being, 2 variants associated with depressive symptoms, and 11 variants associated with neuroticism, including 2 inversion polymorphisms. The two loci associated with depressive symptoms replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ^| ≈ 0.8) strengthen the overall credibility of the findings and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal or pancreas tissues are strongly enriched for association.

Journal ArticleDOI
T. M. C. Abbott, F. B. Abdalla1, Jelena Aleksić2, S. Allam3  +153 moreInstitutions (43)
TL;DR: In this paper, the authors presented the results of the Dark Energy Survey (DES) 2013, 2014, 2015, 2016, 2017, 2018, 2019 and 2019 at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.
Abstract: US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia; Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; National Science Foundation [AST-1138766]; University of California at Santa Cruz; University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago, University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; European Research Council [FP7/291329]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union [240672, 291329, 306478]

Proceedings ArticleDOI
TL;DR: UnitBox as mentioned in this paper proposes an intersection over union (IoU$) loss function for bounding box prediction, which regresses the four bounds of a predicted box as a whole unit.
Abstract: In present object detection systems, the deep convolutional neural networks (CNNs) are utilized to predict bounding boxes of object candidates, and have gained performance advantages over the traditional region proposal methods. However, existing deep CNN methods assume the object bounds to be four independent variables, which could be regressed by the $\ell_2$ loss separately. Such an oversimplified assumption is contrary to the well-received observation, that those variables are correlated, resulting to less accurate localization. To address the issue, we firstly introduce a novel Intersection over Union ($IoU$) loss function for bounding box prediction, which regresses the four bounds of a predicted box as a whole unit. By taking the advantages of $IoU$ loss and deep fully convolutional networks, the UnitBox is introduced, which performs accurate and efficient localization, shows robust to objects of varied shapes and scales, and converges fast. We apply UnitBox on face detection task and achieve the best performance among all published methods on the FDDB benchmark.

Journal ArticleDOI
TL;DR: This work focuses on the developments and progress in nanoparticle design for photothermal cancer therapy since 2010, which includes in vitro and in vivo studies and the recent progression of gold nanoparticle photothermal therapy toward clinical cancer treatment.
Abstract: In recent years, there has been a great deal of interest in the preparation and application of nanoparticles for cancer therapy. Gold nanoparticles are especially suited to thermal destruction of cancer due to their ease of surface functionalization and photothermal heating ability. Here, we review recent progress in gold nanoparticle-mediated thermal cancer therapies. We begin with an introduction to the properties of gold nanoparticles and heat-generating mechanisms which have been established. The pioneering work in photothermal therapy is discussed along with the effects of photothermal heating on cells in vitro. Additionally, radiofrequency-mediated thermal therapy is reviewed. We focus our discussion on the developments and progress in nanoparticle design for photothermal cancer therapy since 2010. This includes in vitro and in vivo studies and the recent progression of gold nanoparticle photothermal therapy toward clinical cancer treatment.

Journal ArticleDOI
11 Aug 2016-Nature
TL;DR: A large, osmotically induced current is observed produced from a salt gradient with an estimated power density of up to 106 watts per square metre—a current that can be attributed mainly to the atomically thin membrane of MoS2, thus demonstrating a self-powered nanosystem.
Abstract: Osmotic power generation is a promising renewable energy source. This study demonstrates the use of single-layer molybdenum disulfide (MoS2) nanopores as osmotic nanogenerators. The transport of water through a membrane scales inversely with membrane thickness, so atomically thin materials should provide the ideal medium to host the nanopores in an osmotic power generator. Aleksandra Radenovic and colleagues produced nanopores in two-dimensional MoS2 and, using a salt gradient across a single nanopore, generated a power output per area orders of magnitude greater than that previously reported for nanotubes. They also show that a chemical potential gradient across a single nanopore in MoS2 can generate enough power to operate a single-layer MoS2 transistor.

Journal ArticleDOI
TL;DR: Extensive evidence that brain-training interventions improve performance on the trained tasks, less evidence that such interventions improved performance on closely related tasks, and little evidence that training enhances performance on distantly related tasks or that training improves everyday cognitive performance are found.
Abstract: In 2014, two groups of scientists published open letters on the efficacy of brain-training interventions, or "brain games," for improving cognition. The first letter, a consensus statement from an international group of more than 70 scientists, claimed that brain games do not provide a scientifically grounded way to improve cognitive functioning or to stave off cognitive decline. Several months later, an international group of 133 scientists and practitioners countered that the literature is replete with demonstrations of the benefits of brain training for a wide variety of cognitive and everyday activities. How could two teams of scientists examine the same literature and come to conflicting "consensus" views about the effectiveness of brain training?In part, the disagreement might result from different standards used when evaluating the evidence. To date, the field has lacked a comprehensive review of the brain-training literature, one that examines both the quantity and the quality of the evidence according to a well-defined set of best practices. This article provides such a review, focusing exclusively on the use of cognitive tasks or games as a means to enhance performance on other tasks. We specify and justify a set of best practices for such brain-training interventions and then use those standards to evaluate all of the published peer-reviewed intervention studies cited on the websites of leading brain-training companies listed on Cognitive Training Data (www.cognitivetrainingdata.org), the site hosting the open letter from brain-training proponents. These citations presumably represent the evidence that best supports the claims of effectiveness.Based on this examination, we find extensive evidence that brain-training interventions improve performance on the trained tasks, less evidence that such interventions improve performance on closely related tasks, and little evidence that training enhances performance on distantly related tasks or that training improves everyday cognitive performance. We also find that many of the published intervention studies had major shortcomings in design or analysis that preclude definitive conclusions about the efficacy of training, and that none of the cited studies conformed to all of the best practices we identify as essential to drawing clear conclusions about the benefits of brain training for everyday activities. We conclude with detailed recommendations for scientists, funding agencies, and policymakers that, if adopted, would lead to better evidence regarding the efficacy of brain-training interventions.

Journal ArticleDOI
TL;DR: A high-resolution structure of an α-synuclein fibril, in a form that induces robust pathology in primary neuronal culture, determined by solid-state NMR spectroscopy and validated by EM and X-ray fiber diffraction is presented.
Abstract: Misfolded α-synuclein amyloid fibrils are the principal components of Lewy bodies and neurites, hallmarks of Parkinson's disease (PD). We present a high-resolution structure of an α-synuclein fibril, in a form that induces robust pathology in primary neuronal culture, determined by solid-state NMR spectroscopy and validated by EM and X-ray fiber diffraction. Over 200 unique long-range distance restraints define a consensus structure with common amyloid features including parallel, in-register β-sheets and hydrophobic-core residues, and with substantial complexity arising from diverse structural features including an intermolecular salt bridge, a glutamine ladder, close backbone interactions involving small residues, and several steric zippers stabilizing a new orthogonal Greek-key topology. These characteristics contribute to the robust propagation of this fibril form, as supported by the structural similarity of early-onset-PD mutants. The structure provides a framework for understanding the interactions of α-synuclein with other proteins and small molecules, to aid in PD diagnosis and treatment.

Journal ArticleDOI
29 Jul 2016-Science
TL;DR: Nanostructuring tungsten diselenide nanoflakes enhances catalytic activity for carbon dioxide conversion to carbon monoxide in an ionic liquid medium and applies this catalyst in a light-harvesting artificial leaf platform that concurrently oxidized water in the absence of any external potential.
Abstract: Conversion of carbon dioxide (CO2) into fuels is an attractive solution to many energy and environmental challenges. However, the chemical inertness of CO2 renders many electrochemical and photochemical conversion processes inefficient. We report a transition metal dichalcogenide nanoarchitecture for catalytic electrochemical CO2 conversion to carbon monoxide (CO) in an ionic liquid. We found that tungsten diselenide nanoflakes show a current density of 18.95 milliamperes per square centimeter, CO faradaic efficiency of 24%, and CO formation turnover frequency of 0.28 per second at a low overpotential of 54 millivolts. We also applied this catalyst in a light-harvesting artificial leaf platform that concurrently oxidized water in the absence of any external potential.

BookDOI
10 Mar 2016
TL;DR: In this paper, an up-to-date overview of recent research concerning the links between family and peer systems is provided, including cross-cultural work, studies of abused children, and research on the impact of maternal depression.
Abstract: This volume provides an up-to-date overview of recent research concerning the links between family and peer systems. Considerable work in the past has focused on family issues or peer relationships, but these systems have typically been considered separately. This volume bridges the gap across these two important socialization contexts and provides insights into the processes that account for the links across the systems -- the ways in which the relationships between these systems shift across development. In addition, the variations in the links between family and peers are illustrated by cross-cultural work, studies of abused children, and research on the impact of maternal depression. In short, the volume provides not only a convenient overview of recent progress but lays out an agenda for future research.