scispace - formally typeset
Search or ask a question
Institution

University of Jyväskylä

EducationJyvaskyla, Finland
About: University of Jyväskylä is a education organization based out in Jyvaskyla, Finland. It is known for research contribution in the topics: Population & Context (language use). The organization has 8066 authors who have published 25168 publications receiving 725033 citations. The organization is also known as: Jyväskylän yliopisto & Kasvatusopillinen korkeakoulu.


Papers
More filters
Journal ArticleDOI
TL;DR: It follows that generating predictions and testing them correctly requires considering this ecogenetic feedback loop whenever traits have demographic consequences, mediated via density dependence (or frequency dependence), and arguably theory has advanced at a greater pace than empirical research.
Abstract: Calls to understand the links between ecology and evolution have been common for decades. Population dynamics, i.e. the demographic changes in populations, arise from life history decisions of individuals and thus are a product of selection, and selection, on the contrary, can be modified by such dynamical properties of the population as density and stability. It follows that generating predictions and testing them correctly requires considering this ecogenetic feedback loop whenever traits have demographic consequences, mediated via density dependence (or frequency dependence). This is not an easy challenge, and arguably theory has advanced at a greater pace than empirical research. However, theory would benefit from more interaction between related fields, as is evident in the many near-synonymous names that the ecogenetic loop has attracted. We also list encouraging examples where empiricists have shown feasible ways of addressing the question, ranging from advanced data analysis to experiments and comparative analyses of phylogenetic data.

188 citations

Journal ArticleDOI
TL;DR: The implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids is presented.
Abstract: We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we found perfect agreement in the calculated photoabsorption spectra. We discuss the strengths and weaknesses of the two methods as well as their convergence properties. We demonstrate different applications of the methods by calculating excitation energies and excited state Born–Oppenheimer potential surfaces for a set of atoms and molecules with the linear-response method and by calculating nonlinear emission spectra using the time-propagation method.

188 citations

Journal ArticleDOI
TL;DR: A molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin are revealed, which is distributed widely in oviparous species, as the carrier of immune-priming signals.
Abstract: Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae – the gram-positive bacterium causing American foulbrood disease – and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin binds to pathogen-associated molecular patterns; lipopolysaccharide, peptidoglycan and zymosan, using surface plasmon resonance. We document that vitellogenin is required for transport of cell-wall pieces of E. coli into eggs by imaging tissue sections. These experiments identify vitellogenin, which is distributed widely in oviparous species, as the carrier of immune-priming signals. This work reveals a molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin.

188 citations

Journal ArticleDOI
B. Abi1, R. Acciarri2, M. A. Acero3, George Adamov4  +966 moreInstitutions (155)
TL;DR: The Deep Underground Neutrino Experiment (DUNE) as discussed by the authors is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model.
Abstract: The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology.

187 citations

Journal ArticleDOI
TL;DR: In conclusion, activation-specific GPIIb/IIIa blockade via human single-chain antibodies represents a promising novel strategy for antiplatelet therapy.
Abstract: Platelet activation causes conformational changes of integrin GPIIb/IIIa (alpha(IIb)beta3), resulting in the exposure of its ligand-binding pocket. This provides the unique possibility to design agents that specifically block activated platelets only. We used phage display of single-chain antibody (scFv) libraries in combination with several rounds of depletion/selection to obtain human scFvs that bind specifically to the activated conformation of GPIIb/IIIa. Functional evaluation of these scFv clones revealed that fibrinogen binding to human platelets and platelet aggregation can be effectively inhibited by activation-specific scFvs. In contrast to clinically used GPIIb/IIIa blockers, which are all conformation unspecific, activation-specific GPIIb/IIIa blockers do not induce conformational changes in GPIIb/IIIa or outside-in signaling, as evaluated by ligand-induced binding-site (LIBS) exposure in flow cytometry or P-selectin expression in immunofluorescence microscopy, respectively. In contrast to the conformation-unspecific blocker abciximab, activation-specific scFvs permit cell adhesion and spreading on immobilized fibrinogen, which is mediated by nonactivated GPIIb/IIIa. Mutagenesis studies and computer modeling indicate that exclusive binding of activation-specific scFv is mediated by RXD motifs in the heavy-chain complementary-determining region (CDR) 3 of the antibodies, which in comparison with other antibodies forms an exceptionally extended loop. In vivo experiments in a ferric-chloride thrombosis model of the mouse carotid artery demonstrate similar antithrombotic potency of activation-specific scFv, when compared with the conformation-unspecific blockers tirofiban and eptifibatide. However, in contrast to tirofiban and eptifibatide, bleeding times are not prolonged with the activation-specific scFvs, suggesting lower bleeding risks. In conclusion, activation-specific GPIIb/IIIa blockade via human single-chain antibodies represents a promising novel strategy for antiplatelet therapy.

186 citations


Authors

Showing all 8239 results

NameH-indexPapersCitations
Brenda W.J.H. Penninx1701139119082
Mika Kivimäki1661515141468
Jaakko Kaprio1631532126320
Marvin Johnson1491827119520
Stanislas Dehaene14945686539
Roger Jones138998114061
Zubayer Ahammed12991259811
James Alexander12988675096
Matti J Kortelainen128118680603
Madan M. Aggarwal12488356065
Joakim Nystrand11765850146
Robert U. Newton10975342527
Dieter Røhrich10263735942
Keijo Häkkinen9942131355
Dong Jo Kim9849736272
Network Information
Related Institutions (5)
University of Helsinki
113.1K papers, 4.6M citations

93% related

Aarhus University
93.5K papers, 3.4M citations

93% related

Uppsala University
107.5K papers, 4.2M citations

92% related

University of Copenhagen
149.7K papers, 5.9M citations

92% related

Lund University
124.6K papers, 5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202390
2022286
20211,666
20201,684
20191,506