scispace - formally typeset
Search or ask a question
Institution

University of Jyväskylä

EducationJyvaskyla, Finland
About: University of Jyväskylä is a education organization based out in Jyvaskyla, Finland. It is known for research contribution in the topics: Population & Neutron. The organization has 8066 authors who have published 25168 publications receiving 725033 citations. The organization is also known as: Jyväskylän yliopisto & Kasvatusopillinen korkeakoulu.


Papers
More filters
Journal ArticleDOI
TL;DR: Soccer players and weightlifters are at increased risk of developing premature knee OA, explained in part by knee injuries in soccer players and by high body mass in weight lifters.
Abstract: Objective. To determine the relationship between different physical loading conditions and findings of knee osteoarthritis (OA). Methods. We selected 117 male former top-level athletes (age range 45–68 years) who had participated in sports activities with distinctly different loading conditions: 28 had been long-distance runners, 31 soccer players, 29 weight lifters, and 29 shooters. Histories of lifetime occupational and athletic knee loading, knee injuries, and knee symptoms were obtained, and subjects were examined clinically and radiographically for knee findings of OA. Results. The prevalence of tibiofemoral or patellofemoral OA based on radiographic examination was 3% in shooters, 29% in soccer players, 31% in weight lifters, and 14% in runners (P = 0.016 between groups). Soccer players had the highest prevalence of tibiofemoral OA (26%), and weight lifters had the highest prevalence of patellofemoral OA (28%). Subjects with radiographically documented knee OA had more symptoms, clinical findings, and functional limitations than did subjects without knee OA. By stepwise logistic regression analysis, the risk for having knee OA was increased in subjects with previous knee injuries (odds ratio [OR] 4.73), high body mass index at the age of 20 (OR 1.76/unit of increasing body mass index), previous participation in heavy work (OR 1.08/work-year), kneeling or squatting work (OR 1.10/work-year), and in subjects participating in soccer (OR 5.21). Conclusion. Soccer players and weight lifters are at increased risk of developing premature knee OA. The increased risk is explained in part by knee injuries in soccer players and by high body mass in weight lifters.

427 citations

Journal ArticleDOI
TL;DR: Effects of a 24-week strength training performed twice weekly (24 ST) (combined with explosive exercises) followed by either a 3-week detraining and a 21-week re-strength-training (21 RST) or by a 24 week detraining (24 DT) on neural activation of the agonist and antagonist leg extensors, muscle cross-sectional area (CSA) of the quadriceps femoris, maximal isometric and one repetition maximum (1-RM
Abstract: Effects of a 24-week strength training performed twice weekly (24 ST) (combined with explosive exercises) followed by either a 3-week detraining (3 DT) and a 21-week re-strength-training (21 RST) (experiment A) or by a 24-week detraining (24 DT) (experiment B) on neural activation of the agonist and antagonist leg extensors, muscle cross-sectional area (CSA) of the quadriceps femoris, maximal isometric and one repetition maximum (1-RM) strength and jumping (J) and walking (W) performances were examined. A group of middle-aged (M, 37–44 years, n=12) and elderly (E, 62–77, n=10) and another group of M (35–45, n=7) and E (63–78, n=7) served as subjects. In experiment A, the 1-RM increased substantially during 24 ST in M (27%, P < 0.001) and E (29%, P < 0.001) and in experiment B in M (29%, P < 0.001) and E (23%, P < 0.01). During 21 RST the 1-RM was increased by 5% at week 48 (P < 0.01) in M and 3% at week 41 in E (n.s., but P < 0.05 at week 34). In experiment A the integrated electromyogram (IEMG) of the vastus muscles in the 1-RM increased during 24 ST in both M (P < 0.05) and E (P < 0.001) and during 21 RST in M for the right (P < 0.05) and in E for both legs (P < 0.05). The biceps femoris co-activation during the 1-RM leg extension decreased during the first 8-week training in M (from 29 ± 5% to 25 ± 3%, n.s.) and especially in E (from 41 ± 11% to 32 ± 9%, P < 0.05). The CSA increased by 7% in M (P < 0.05) and by 7% in E (P < 0.001), and by 7% (n.s.) in M and by 3% in E (n.s.) during 24 ST periods. Increases of 18% (P < 0.001) and 12% (P < 0.05) in M and 22% (P < 0.001) and 26% (P < 0.05) in E occurred in J. W speed increased (P < 0.05) in both age groups. The only decrease during 3 DT was in maximal isometric force in M by 6% (P < 0.05) and by 4% (n.s.) in E. During 24 DT the CSA decreased in both age groups (P < 0.01), the 1-RM decreased by 6% (P < 0.05) in M and by 4% (P < 0.05) in E and isometric force by 12% (P < 0.001) in M and by 9% (P < 0.05) in E, respectively, while J and W remained unaltered. The strength gains were accompanied by increased maximal voluntary neural activation of the agonists in both age groups with reduced antagonist co-activation in the elderly during the initial training phases. Neural adaptation seemed to play a greater role than muscle hypertrophy. Short-term detraining led to only minor changes, while prolonged detraining resulted in muscle atrophy and decreased voluntary strength, but explosive jumping and walking actions in both age groups appeared to remain elevated for quite a long time by compensatory types of physical activities when performed on a regular basis.

425 citations

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1496 moreInstitutions (238)
TL;DR: In this paper, the authors describe the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider in collaboration with national institutes, laboratories and universities worldwide, and enhanced by a strong participation of industrial partners.
Abstract: Particle physics has arrived at an important moment of its history. The discovery of the Higgs boson, with a mass of 125 GeV, completes the matrix of particles and interactions that has constituted the “Standard Model” for several decades. This model is a consistent and predictive theory, which has so far proven successful at describing all phenomena accessible to collider experiments. However, several experimental facts do require the extension of the Standard Model and explanations are needed for observations such as the abundance of matter over antimatter, the striking evidence for dark matter and the non-zero neutrino masses. Theoretical issues such as the hierarchy problem, and, more in general, the dynamical origin of the Higgs mechanism, do likewise point to the existence of physics beyond the Standard Model. This report contains the description of a novel research infrastructure based on a highest-energy hadron collider with a centre-of-mass collision energy of 100 TeV and an integrated luminosity of at least a factor of 5 larger than the HL-LHC. It will extend the current energy frontier by almost an order of magnitude. The mass reach for direct discovery will reach several tens of TeV, and allow, for example, to produce new particles whose existence could be indirectly exposed by precision measurements during the earlier preceding e+e– collider phase. This collider will also precisely measure the Higgs self-coupling and thoroughly explore the dynamics of electroweak symmetry breaking at the TeV scale, to elucidate the nature of the electroweak phase transition. WIMPs as thermal dark matter candidates will be discovered, or ruled out. As a single project, this particle collider infrastructure will serve the world-wide physics community for about 25 years and, in combination with a lepton collider (see FCC conceptual design report volume 2), will provide a research tool until the end of the 21st century. Collision energies beyond 100 TeV can be considered when using high-temperature superconductors. The European Strategy for Particle Physics (ESPP) update 2013 stated “To stay at the forefront of particle physics, Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update”. The FCC study has implemented the ESPP recommendation by developing a long-term vision for an “accelerator project in a global context”. This document describes the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider “in collaboration with national institutes, laboratories and universities worldwide”, and enhanced by a strong participation of industrial partners. Now, a coordinated preparation effort can be based on a core of an ever-growing consortium of already more than 135 institutes worldwide. The technology for constructing a high-energy circular hadron collider can be brought to the technology readiness level required for constructing within the coming ten years through a focused R&D programme. The FCC-hh concept comprises in the baseline scenario a power-saving, low-temperature superconducting magnet system based on an evolution of the Nb3Sn technology pioneered at the HL-LHC, an energy-efficient cryogenic refrigeration infrastructure based on a neon-helium (Nelium) light gas mixture, a high-reliability and low loss cryogen distribution infrastructure based on Invar, high-power distributed beam transfer using superconducting elements and local magnet energy recovery and re-use technologies that are already gradually introduced at other CERN accelerators. On a longer timescale, high-temperature superconductors can be developed together with industrial partners to achieve an even more energy efficient particle collider or to reach even higher collision energies.The re-use of the LHC and its injector chain, which also serve for a concurrently running physics programme, is an essential lever to come to an overall sustainable research infrastructure at the energy frontier. Strategic R&D for FCC-hh aims at minimising construction cost and energy consumption, while maximising the socio-economic impact. It will mitigate technology-related risks and ensure that industry can benefit from an acceptable utility. Concerning the implementation, a preparatory phase of about eight years is both necessary and adequate to establish the project governance and organisation structures, to build the international machine and experiment consortia, to develop a territorial implantation plan in agreement with the host-states’ requirements, to optimise the disposal of land and underground volumes, and to prepare the civil engineering project. Such a large-scale, international fundamental research infrastructure, tightly involving industrial partners and providing training at all education levels, will be a strong motor of economic and societal development in all participating nations. The FCC study has implemented a set of actions towards a coherent vision for the world-wide high-energy and particle physics community, providing a collaborative framework for topically complementary and geographically well-balanced contributions. This conceptual design report lays the foundation for a subsequent infrastructure preparatory and technical design phase.

425 citations

Journal ArticleDOI
TL;DR: Severe events, both on their own and in conjunction with high chronic stress, significantly increased the risk of new asthma attacks in children who already have asthma.

425 citations

Journal ArticleDOI
19 Apr 2013-Science
TL;DR: This study quantified dissolution products of charcoal in a wide range of rivers worldwide and shows that globally, a major portion of the annual charcoal production is lost from soils via dissolution and subsequent transport to the ocean.
Abstract: Global biomass burning generates 40 million to 250 million tons of charcoal every year, part of which is preserved for millennia in soils and sediments. We have quantified dissolution products of charcoal in a wide range of rivers worldwide and show that globally, a major portion of the annual charcoal production is lost from soils via dissolution and subsequent transport to the ocean. The global flux of soluble charcoal accounts to 26.5 ± 1.8 million tons per year, which is ~10% of the global riverine flux of dissolved organic carbon (DOC). We suggest that the mobilization of charcoal and DOC out of soils is mechanistically coupled. This study closes a major gap in the global charcoal budget and provides critical information in the context of geoengineering.

422 citations


Authors

Showing all 8239 results

NameH-indexPapersCitations
Brenda W.J.H. Penninx1701139119082
Mika Kivimäki1661515141468
Jaakko Kaprio1631532126320
Marvin Johnson1491827119520
Stanislas Dehaene14945686539
Roger Jones138998114061
Zubayer Ahammed12991259811
James Alexander12988675096
Matti J Kortelainen128118680603
Madan M. Aggarwal12488356065
Joakim Nystrand11765850146
Robert U. Newton10975342527
Dieter Røhrich10263735942
Keijo Häkkinen9942131355
Dong Jo Kim9849736272
Network Information
Related Institutions (5)
University of Helsinki
113.1K papers, 4.6M citations

93% related

Aarhus University
93.5K papers, 3.4M citations

93% related

Uppsala University
107.5K papers, 4.2M citations

92% related

University of Copenhagen
149.7K papers, 5.9M citations

92% related

Lund University
124.6K papers, 5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202390
2022286
20211,666
20201,684
20191,506