scispace - formally typeset
Search or ask a question
Institution

University of Kansas

EducationLawrence, Kansas, United States
About: University of Kansas is a education organization based out in Lawrence, Kansas, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 38183 authors who have published 81381 publications receiving 2986312 citations. The organization is also known as: KU & Univ of Kansas.


Papers
More filters
Journal ArticleDOI
TL;DR: Updated information regarding the early diagnosis and management of individuals with Prader-Willi syndrome is important for all physicians and will be helpful in anticipating and managing or modifying complications associated with this rare obesity-related disorder.
Abstract: Introduction Prader-Willi syndrome (PWS) is a multisystemic complex genetic disorder caused by lack of expression of genes on the paternally inherited chromosome 15q11.2-q13 region. There are three main genetic subtypes in PWS: paternal 15q11-q13 deletion (65–75 % of cases), maternal uniparental disomy 15 (20–30 % of cases), and imprinting defect (1–3 %). DNA methylation analysis is the only technique that will diagnose PWS in all three molecular genetic classes and differentiate PWS from Angelman syndrome. Clinical manifestations change with age with hypotonia and a poor suck resulting in failure to thrive during infancy. As the individual ages, other features such as short stature, food seeking with excessive weight gain, developmental delay, cognitive disability and behavioral problems become evident. The phenotype is likely due to hypothalamic dysfunction, which is responsible for hyperphagia, temperature instability, high pain threshold, hypersomnia and multiple endocrine abnormalities including growth hormone and thyroid-stimulating hormone deficiencies, hypogonadism and central adrenal insufficiency. Obesity and its complications are the major causes of morbidity and mortality in PWS.

414 citations

Journal ArticleDOI
01 Jul 1999-Ecology
TL;DR: This work has profited from conversations on this and related topics with many scientists, and wish to thank in particular P. A. Rosenzweig, T. Tscharntke, and J. Wright.
Abstract: We acknowledge support by the National Science Foundation (to R. D. Holt and G. A. Polis), and by the National Environmental Research Council (R. D. Holt, J. H. Lawton, and N. D. Martinez). R. D. Holt and N. D. Martinez thank the NERC Centre for Population Biology, Imperial College at Silwood Park, for support and hospitality. We have profited from conversations on this and related topics with many scientists, and wish to thank in particular P. A. Abrams, W. B. Anderson, J. Bengtsson, W. J. O’Brien, Jr., M. Rosenzweig, T. Schoener, T. Tscharntke, and J. Wright.

413 citations

Journal ArticleDOI
08 Jan 2015-Nature
TL;DR: Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet.
Abstract: Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan The influence of yeast mannan on the ecology of the human microbiota is unknown Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes Co-culturing studies showed that metabolism of yeast mannan by B thetaiotaomicron presents a 'selfish' model for the catabolism of this difficult to breakdown polysaccharide Genomic comparison with B thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet

413 citations

Posted Content
TL;DR: In this article, the causes, consequences, and implications of cross-border consolidation of financial institutions by reviewing several hundred studies, providing comparative international data, and estimating cross-bank efficiency in France, Germany, Spain, the U.K., and the United States during the 1990s.
Abstract: We address the causes, consequences, and implications of the cross-border consolidation of financial institutions by reviewing several hundred studies, providing comparative international data, and estimating cross-border banking efficiency in France, Germany, Spain, the U.K., and the U.S. during the 1990s. We find that, on average, domestic banks have higher profit efficiency than foreign banks. However, banks from at least one country (the U.S.) appear to operate with relatively high efficiency both at home and abroad. If these results continue to hold, they do not preclude successful international expansion by some financial firms, but they do suggest limits to global consolidation.

413 citations

Journal ArticleDOI
07 Jul 2011-Nature
TL;DR: The results indicate that peptides from structure-based designs can disrupt the fibril formation of full-length proteins, including those, such as tau protein, that lack fully ordered native structures.
Abstract: Many globular and natively disordered proteins can convert into amyloid fibrils. These fibrils are associated with numerous pathologies as well as with normal cellular functions, and frequently form during protein denaturation. Inhibitors of pathological amyloid fibril formation could be useful in the development of therapeutics, provided that the inhibitors were specific enough to avoid interfering with normal processes. Here we show that computer-aided, structure-based design can yield highly specific peptide inhibitors of amyloid formation. Using known atomic structures of segments of amyloid fibrils as templates, we have designed and characterized an all-D-amino-acid inhibitor of the fibril formation of the tau protein associated with Alzheimer's disease, and a non-natural L-amino-acid inhibitor of an amyloid fibril that enhances sexual transmission of human immunodeficiency virus. Our results indicate that peptides from structure-based designs can disrupt the fibril formation of full-length proteins, including those, such as tau protein, that lack fully ordered native structures. Because the inhibiting peptides have been designed on structures of dual-β-sheet 'steric zippers', the successful inhibition of amyloid fibril formation strengthens the hypothesis that amyloid spines contain steric zippers.

412 citations


Authors

Showing all 38401 results

NameH-indexPapersCitations
Gordon H. Guyatt2311620228631
Krzysztof Matyjaszewski1691431128585
Wei Li1581855124748
David Tilman158340149473
Tomas Hökfelt158103395979
Pete Smith1562464138819
Daniel J. Rader1551026107408
Melody A. Swartz1481304103753
Kevin Murphy146728120475
Carlo Rovelli1461502103550
Stephen Sanders1451385105943
Marco Zanetti1451439104610
Andrei Gritsan1431531135398
Gunther Roland1411471100681
Joseph T. Hupp14173182647
Network Information
Related Institutions (5)
University of Minnesota
257.9K papers, 11.9M citations

96% related

Yale University
220.6K papers, 12.8M citations

95% related

University of Washington
305.5K papers, 17.7M citations

95% related

Duke University
200.3K papers, 10.7M citations

95% related

University of Michigan
342.3K papers, 17.6M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202391
2022358
20214,211
20204,204
20193,766
20183,485