scispace - formally typeset
Search or ask a question
Institution

University of Kentucky

EducationLexington, Kentucky, United States
About: University of Kentucky is a education organization based out in Lexington, Kentucky, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 43933 authors who have published 92195 publications receiving 3256087 citations. The organization is also known as: UK.


Papers
More filters
Proceedings ArticleDOI
29 Jun 1997
TL;DR: In this article, the performances of four turbulence models are evaluated against eight selected experimental flow fields, including freeshear flows, an incompressibl e boundary layer, and three complex flows with flow separation.
Abstract: The performances of four turbulence models are evaluated against eight selected experimental flow fields. The four models are the two-equation k-e model of Launder and Sharma, the two-equation k-a> model of Wilcox, the twoequation k-03 SST model of Menter, and the one-equation eddy-viscosity model of Spalart and Allmaras. The eight turbulent flows of the validation are four fully-developed freeshear flows, an incompressibl e boundary layer, and three complex flows with flow separation. The free-shear layer flows comprise a mixing layer, a round jet, a plane jet, and a plane wake flow. The three complex flows are comprised of an adverse-pressure-gradient boundary layer, an axisymmetric shock-wave/boundary-layer interaction, and a transonic RAE 2822 airfoil flow. The experimental data for these flows is well established and has been extensively used in model developments. The numerical predictions include mean velocity profiles, spreading rates, surface pressure coefficients, skin friction, and shear-stress profiles. Most significantly, this research includes a sensitivity study on the accuracy of the solutions with respect to the effects of freestream turbulence, grid resolution, grid spacing near the wall, initial conditions, numerical methods and codes, and free stream Mach number effects on incompressible flows.

494 citations

Journal ArticleDOI
TL;DR: It is found that the Clock mutation affects the expression of many genes that are rhythmic in WT tissue, but also profoundly affects many nonrhythmic genes, suggesting that tissue-specific output of the pacemaker is regulated in part by a transcriptional cascade.
Abstract: Circadian rhythms of cell and organismal physiology are controlled by an autoregulatory transcription-translation feedback loop that regulates the expression of rhythmic genes in a tissue-specific manner. Recent studies have suggested that components of the circadian pacemaker, such as the Clock and Per2 gene products, regulate a wide variety of processes, including obesity, sensitization to cocaine, cancer susceptibility, and morbidity to chemotherapeutic agents. To identify a more complete cohort of genes that are transcriptionally regulated by CLOCK and/or circadian rhythms, we used a DNA array interrogating the mouse protein-encoding transcriptome to measure gene expression in liver and skeletal muscle from WT and Clock mutant mice. In WT tissue, we found that a large percentage of expressed genes were transcription factors that were rhythmic in either muscle or liver, but not in both, suggesting that tissue-specific output of the pacemaker is regulated in part by a transcriptional cascade. In comparing tissues from WT and Clock mutant mice, we found that the Clock mutation affects the expression of many genes that are rhythmic in WT tissue, but also profoundly affects many nonrhythmic genes. In both liver and skeletal muscle, a significant number of CLOCK-regulated genes were associated with the cell cycle and cell proliferation. To determine whether the observed patterns in cell-cycle gene expression in Clock mutants resulted in functional dysregulation, we compared proliferation rates of fibroblasts derived from WT or Clock mutant embryos and found that the Clock mutation significantly inhibits cell growth and proliferation.

493 citations

Journal ArticleDOI
TL;DR: Phylogenetic data and fossil evidence seem to support the PY→(PY+PD) evolutionary sequence in Anacardiaceae, which also may have occured in Leguminosae.
Abstract: Physical dormancy (PY) is caused by a water-impermeable seed or fruit coat. It is known, or highly suspected, to occur in nine orders and 15 families of angiosperms (sensuAngiosperm Phylogeny Group 1998), 13 of which are core eudicots. The Zingiberales is the only monocot order, and Cannaceae (Canna) the only monocot family, in which PY is known to occur. Six of the nine orders, and 12 of the 15 families, in which PY occurs are rosids. Furthermore, six of the families belong to the Malvales. The water-impermeable palisade layer(s) of cells are located in the seed coats of 13 of the families, and in the fruit coats of Anacardiaceae and Nelumbonaceae. In all 15 families, a specialized structure is associated with the water-impermeable layer(s). The breaking of PY involves disruption or dislodgment of these structures, which act as environmental ‘signal detectors’ for germination. Representatives of the nine angiosperm orders in which PY occurs had evolved by the late Cretaceous or early Tertiary (Paleogene). Anatomical evidence for PY in fruits of the extinct species Rhus rooseae (Anacardiaceae, middle Eocene) suggests that PY had evolved by 43Ma, and probably much earlier. We have constructed a conceptual model for the evolution of PY, and of PY+ physiological dormancy (PD), within Anacardiaceae. The model begins in pre-Eocene times with an ancestral species that has large, pachychalazal, non-dormant (ND), recalcitrant seeds. By the middle Eocene, a derived species with relatively small, partial pachychalazal, orthodox seeds and a water-impermeable endocarp (thus PY) had evolved, and by the Oligocene, PD had been added to the seed (true seed + endocarp) dormancy mechanism. It is suggested that climatic drying (Eocene), followed by climatic cooling (Eocene–Oligocene transition), were the primary selective agents in the development of PY. An evolutionary connection between PY and recalcitrance is suggested by the relatively high concentration of these two character states in the rosids. Phylogenetic data and fossil evidence seem to support the PY→(PY+PD) evolutionary sequence in Anacardiaceae, which also may have occured in Leguminosae.

493 citations

Journal ArticleDOI
TL;DR: The identification of novel functions for SC and SIgA has expanded the view of the immunobiology of pIgR, a key component of the mucosal immune system that bridges innate and adaptive immune defense.
Abstract: Secretory antibodies of the immunoglobulin A (IgA) class form the first line of antigen-specific immune protection against inhaled, ingested, and sexually transmitted pathogens and antigens at mucosal surfaces. Epithelial transcytosis of polymeric IgA (pIgA) is mediated by the polymeric immunoglobulin receptor (pIgR). At the apical surface, the extracellular ligand-binding region of pIgR, known as secretory component (SC), is cleaved and released in free form or as a component of secretory IgA (SIgA). SC has innate anti-microbial properties, and it protects SIgA from proteolytic degradation. Expression of pIgR is regulated by microbial products through Toll-like receptor signaling and by host factors such as cytokines and hormones. Recent studies of the structure of the extracellular ligand-binding domain of pIgR have revealed mechanisms by which it binds pIgA and other ligands. During transcytosis, pIgA has been shown to neutralize pathogens and antigens within intracellular vesicular compartments. The recent identification of disease-associated polymorphisms in human pIgR near the cleavage site may help to unravel the mystery of how pIgR is cleaved to SC. The identification of novel functions for SC and SIgA has expanded our view of the immunobiology of pIgR, a key component of the mucosal immune system that bridges innate and adaptive immune defense.

493 citations

Journal ArticleDOI
TL;DR: This paper defines goals for a tracing tool based on analyst responsibilities in the tracing process, introduces several new measures for validating that the goals have been satisfied, and presents a prototype tool that is built, RETRO (REquirements TRacing On-target), to address these goals.
Abstract: This paper addresses the issues related to improving the overall quality of the dynamic candidate link generation for the requirements tracing process for verification and validation and independent verification and validation analysts. The contribution of the paper is four-fold: we define goals for a tracing tool based on analyst responsibilities in the tracing process, we introduce several new measures for validating that the goals have been satisfied, we implement analyst feedback in the tracing process, and we present a prototype tool that we built, RETRO (REquirements TRacing On-target), to address these goals. We also present the results of a study used to assess RETRO's support of goals and goal elements that can be measured objectively.

493 citations


Authors

Showing all 44305 results

NameH-indexPapersCitations
Mark P. Mattson200980138033
Carlo M. Croce1981135189007
Charles A. Dinarello1901058139668
Richard A. Gibbs172889249708
Gang Chen1673372149819
David A. Bennett1671142109844
Carl W. Cotman165809105323
Rodney S. Ruoff164666194902
David Tilman158340149473
David Cella1561258106402
Richard E. Smalley153494111117
Deepak L. Bhatt1491973114652
Kevin Murphy146728120475
Jian Yang1421818111166
Thomas J. Smith1401775113919
Network Information
Related Institutions (5)
University of Minnesota
257.9K papers, 11.9M citations

98% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

97% related

University of Pittsburgh
201K papers, 9.6M citations

96% related

Cornell University
235.5K papers, 12.2M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023108
2022532
20214,329
20204,216
20193,965
20183,605