scispace - formally typeset
Search or ask a question
Institution

University of Kentucky

EducationLexington, Kentucky, United States
About: University of Kentucky is a education organization based out in Lexington, Kentucky, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 43933 authors who have published 92195 publications receiving 3256087 citations. The organization is also known as: UK.


Papers
More filters
Journal ArticleDOI
TL;DR: The relationship between mental illness stigma and culture for Americans of American Indian, Asian, African, Latino, Middle Eastern, and European descent is examined.

452 citations

Journal ArticleDOI
TL;DR: The Metabolicomics Workbench provides data from the Common Fund's Metabolomics Resource Cores, metabolite standards, and analysis tools to the wider metabolomics community and seeks data depositions from metabolomics researchers across the world.
Abstract: The Metabolomics Workbench, available at www.metabolomicsworkbench.org, is a public repository for metabolomics metadata and experimental data spanning various species and experimental platforms, metabolite standards, metabolite structures, protocols, tutorials, and training material and other educational resources. It provides a computational platform to integrate, analyze, track, deposit and disseminate large volumes of heterogeneous data from a wide variety of metabolomics studies including mass spectrometry (MS) and nuclear magnetic resonance spectrometry (NMR) data spanning over 20 different species covering all the major taxonomic categories including humans and other mammals, plants, insects, invertebrates and microorganisms. Additionally, a number of protocols are provided for a range of metabolite classes, sample types, and both MS and NMR-based studies, along with a metabolite structure database. The metabolites characterized in the studies available on the Metabolomics Workbench are linked to chemical structures in the metabolite structure database to facilitate comparative analysis across studies. The Metabolomics Workbench, part of the data coordinating effort of the National Institute of Health (NIH) Common Fund's Metabolomics Program, provides data from the Common Fund's Metabolomics Resource Cores, metabolite standards, and analysis tools to the wider metabolomics community and seeks data depositions from metabolomics researchers across the world.

452 citations

Journal ArticleDOI
TL;DR: Results support a major role for free radical generation in ADR toxicity as well as suggesting mitochondria as the critical site of cardiac injury.
Abstract: Adriamycin (ADR) is a potent anticancer drug known to cause severe cardiac toxicity. Although ADR generates free radicals, the role of free radicals in the development of cardiac toxicity and the intracellular target for ADR-induced cardiac toxicity are still not well understood. We produced three transgenic mice lines expressing increased levels of human manganese superoxide dismutase (MnSOD), a mitochondrial enzyme, as an animal model to investigate the role of ADR-mediated free radical generation in mitochondria. The human MnSOD was expressed, functionally active, and properly transported into mitochondria in the heart of transgenic mice. The levels of copper-zinc SOD, catalase, and glutathione peroxidase did not change in the transgenic mice. Electron microscopy revealed dose-dependent ultrastructural alterations with marked mitochondrial damage in nontransgenic mice treated with ADR, but not in the transgenic littermates. Biochemical analysis indicated that the levels of serum creatine kinase and lactate dehydrogenase in ADR-treated mice were significantly greater in nontransgenic than their transgenic littermates expressing a high level of human MnSOD after ADR treatment. These results support a major role for free radical generation in ADR toxicity as well as suggesting mitochondria as the critical site of cardiac injury.

451 citations

Journal ArticleDOI
TL;DR: In this article, the authors present measurements of bulk properties of the matter produced in Au+Au collisions at sNN=7.7,11.5,19.6,27, and 39 GeV using identified hadrons from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC).
Abstract: © 2017 American Physical Society. We present measurements of bulk properties of the matter produced in Au+Au collisions at sNN=7.7,11.5,19.6,27, and 39 GeV using identified hadrons (π±, K±, p, and p) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity (|y| < 0.1) results for multiplicity densities dN/dy, average transverse momenta (pT), and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.

451 citations

Journal ArticleDOI
TL;DR: A comprehensive assessment of the multiple symptoms domains associated with fibromyalgia and the impact of Fibromyalgia on multidimensional aspects of function should be a routine part of the care of fibromyalgic patients.

451 citations


Authors

Showing all 44305 results

NameH-indexPapersCitations
Mark P. Mattson200980138033
Carlo M. Croce1981135189007
Charles A. Dinarello1901058139668
Richard A. Gibbs172889249708
Gang Chen1673372149819
David A. Bennett1671142109844
Carl W. Cotman165809105323
Rodney S. Ruoff164666194902
David Tilman158340149473
David Cella1561258106402
Richard E. Smalley153494111117
Deepak L. Bhatt1491973114652
Kevin Murphy146728120475
Jian Yang1421818111166
Thomas J. Smith1401775113919
Network Information
Related Institutions (5)
University of Minnesota
257.9K papers, 11.9M citations

98% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

97% related

University of Pittsburgh
201K papers, 9.6M citations

96% related

Cornell University
235.5K papers, 12.2M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023108
2022532
20214,329
20204,216
20193,965
20183,605