scispace - formally typeset
Search or ask a question
Institution

University of Kentucky

EducationLexington, Kentucky, United States
About: University of Kentucky is a education organization based out in Lexington, Kentucky, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 43933 authors who have published 92195 publications receiving 3256087 citations. The organization is also known as: UK.


Papers
More filters
Journal ArticleDOI
TL;DR: FR greatly increased the resistance of rats to kainate‐induced deficits in performance in water‐maze learning and memory tasks, and to 3‐nitropropionic acid–induced impairment of motor function, suggesting that FR not only extends life span, but increases resistance of the brain to insults that involve metabolic compromise and excitotoxicity.
Abstract: Food restriction (FR) in rodents is known to extend life span, reduce the incidence of age-related tumors, and suppress oxidative damage to proteins, lipids, and DNA in several organ systems. Excitotoxicity and mitochondrial impairment are believed to play major roles in the neuronal degeneration and death that occurs in the brains of patients suffering from both acute brain insults such as stroke and seizures, and chronic neurodegenerative conditions such as Alzheimer's, Parkinson's, and Huntington's diseases. We now report that FR (alternate-day feeding regimen for 2-4 months) in adult rats results in resistance of hippocampal neurons to excitotoxin-induced degeneration, and of striatal neurons to degeneration induced by the mitochondrial toxins 3-nitropropionic acid and malonate. FR greatly increased the resistance of rats to kainate-induced deficits in performance in water-maze learning and memory tasks, and to 3-nitropropionic acid-induced impairment of motor function. These findings suggest that FR not only extends life span, but increases resistance of the brain to insults that involve metabolic compromise and excitotoxicity.

405 citations

Journal ArticleDOI
Oduola Abiola1, Joe M. Angel2, Philip Avner3, Alexander A. Bachmanov4, John K. Belknap5, Beth Bennett6, Elizabeth P. Blankenhorn7, David A. Blizard8, Valerie J. Bolivar9, Gudrun A. Brockmann10, Kari J. Buck5, Jean Francois Bureau3, William L. Casley11, Elissa J. Chesler12, James M. Cheverud13, Gary A. Churchill, Melloni N. Cook14, John C. Crabbe5, Wim E. Crusio15, Ariel Darvasi16, Gerald de Haan17, Peter Demant18, Rebecca W. Doerge19, Rosemary W. Elliott18, Charles R. Farber20, Lorraine Flaherty9, Jonathan Flint21, Howard K. Gershenfeld22, John P. Gibson23, Jing Gu12, Weikuan Gu12, Heinz Himmelbauer24, Robert Hitzemann5, Hui-Chen Hsu25, Kent W. Hunter26, Fuad A. Iraqi23, Ritsert C. Jansen17, Thomas E. Johnson6, Byron C. Jones8, Gerd Kempermann27, Frank Lammert28, Lu Lu12, Kenneth F. Manly18, Douglas B. Matthews14, Juan F. Medrano20, Margarete Mehrabian29, Guy Mittleman14, Beverly A. Mock26, Jeffrey S. Mogil30, Xavier Montagutelli3, Grant Morahan31, John D. Mountz25, Hiroki Nagase18, Richard S. Nowakowski32, Bruce F. O'Hara33, Alexander V. Osadchuk, Beverly Paigen, Abraham A. Palmer34, Jeremy L. Peirce35, Daniel Pomp36, Michael Rosemann, Glenn D. Rosen37, Leonard C. Schalkwyk1, Ze'ev Seltzer38, Stephen H. Settle39, Kazuhiro Shimomura40, Siming Shou41, James M. Sikela42, Linda D. Siracusa43, Jimmy L. Spearow20, Cory Teuscher44, David W. Threadgill45, Linda A. Toth46, A. A. Toye47, Csaba Vadasz48, Gary Van Zant49, Edward K. Wakeland22, Robert W. Williams12, Huang-Ge Zhang25, Fei Zou45 
TL;DR: This white paper by eighty members of the Complex Trait Consortium presents a community's view on the approaches and statistical analyses that are needed for the identification of genetic loci that determine quantitative traits.
Abstract: This white paper by eighty members of the Complex Trait Consortium presents a community's view on the approaches and statistical analyses that are needed for the identification of genetic loci that determine quantitative traits. Quantitative trait loci (QTLs) can be identified in several ways, but is there a definitive test of whether a candidate locus actually corresponds to a specific QTL?

404 citations

Journal ArticleDOI
TL;DR: In this article, a simple model for an interacting liquid of particles lacking an axis of rotational symmetry is proposed, and the four order parameters necessary to describe an ordered phase are identified.
Abstract: A simple model for an interacting liquid of particles lacking an axis of rotational symmetry is proposed. The four order parameters necessary to describe an ordered phase are identified. An ensemble of such particles is described by a mean field theory. A phase diagram showing both uniaxial and biaxial phases results. The model predicts a phase diagram similar to that of the phenomenological model of Alben.

404 citations

Journal ArticleDOI
Claudio L. Afonso1, Gaya K. Amarasinghe2, Krisztián Bányai3, Yīmíng Bào4, Christopher F. Basler5, Sina Bavari6, Nicolás Bejerman, Kim R. Blasdell7, François Xavier Briand, Thomas Briese8, Alexander Bukreyev9, Charles H. Calisher10, Kartik Chandran11, Jiāsēn Chéng12, Anna N. Clawson4, Peter L. Collins4, Ralf G. Dietzgen13, Olga Dolnik14, Leslie L. Domier15, Ralf Dürrwald, John M. Dye6, Andrew J. Easton16, Hideki Ebihara4, Szilvia L. Farkas3, Juliana Freitas-Astúa17, Pierre Formenty18, Ron A. M. Fouchier19, Yanping Fu12, Elodie Ghedin20, Michael M. Goodin21, Roger Hewson22, Masayuki Horie23, Timothy H. Hyndman24, Dàohóng Jiāng12, E. W. Kitajima25, Gary P. Kobinger26, Hideki Kondo27, Gael Kurath28, Robert A. Lamb29, Sergio Lenardon, Eric M. Leroy, C. Li, Xian Dan Lin30, Lìjiāng Liú12, Ben Longdon31, Szilvia Marton3, Andrea Maisner14, Elke Mühlberger32, Sergey V. Netesov33, Norbert Nowotny34, Norbert Nowotny35, Jean L. Patterson36, Susan Payne37, Janusz T. Paweska, Richard E. Randall38, Bertus K. Rima39, Paul A. Rota30, Dennis Rubbenstroth40, Martin Schwemmle40, Mang Shi41, Sophie J. Smither42, Mark D. Stenglein10, David M. Stone, Ayato Takada43, Calogero Terregino, Robert B. Tesh9, Jun Hua Tian30, Keizo Tomonaga44, Noël Tordo45, Jonathan S. Towner30, Nikos Vasilakis9, Martin Verbeek46, Viktor E. Volchkov47, Victoria Wahl-Jensen, John A. Walsh16, Peter J. Walker7, David Wang2, Lin-Fa Wang48, Thierry Wetzel, Anna E. Whitfield49, Jiǎtāo Xiè12, Kwok-Yung Yuen50, Yong-Zhen Zhang41, Jens H. Kuhn4 
United States Department of Agriculture1, Washington University in St. Louis2, Hungarian Academy of Sciences3, National Institutes of Health4, Georgia State University5, United States Army Medical Research Institute of Infectious Diseases6, Commonwealth Scientific and Industrial Research Organisation7, Columbia University8, University of Texas Medical Branch9, Colorado State University10, Yeshiva University11, Huazhong Agricultural University12, University of Queensland13, University of Marburg14, University of Illinois at Urbana–Champaign15, University of Warwick16, Empresa Brasileira de Pesquisa Agropecuária17, World Health Organization18, Erasmus University Rotterdam19, New York University20, University of Kentucky21, Public Health England22, Kagoshima University23, Murdoch University24, University of São Paulo25, Public Health Agency of Canada26, Okayama University27, United States Geological Survey28, Northwestern University29, Centers for Disease Control and Prevention30, University of Cambridge31, Boston University32, Novosibirsk State University33, University of Medicine and Health Sciences34, University of Veterinary Medicine Vienna35, Texas Biomedical Research Institute36, Texas A&M University37, University of St Andrews38, Queen's University Belfast39, University of Freiburg40, Chinese Center for Disease Control and Prevention41, Defence Science and Technology Laboratory42, Hokkaido University43, Kyoto University44, Pasteur Institute45, Wageningen University and Research Centre46, University of Lyon47, National University of Singapore48, Kansas State University49, University of Hong Kong50
TL;DR: The updated taxonomy of the order Mononegavirales is presented as now accepted by the International Committee on Taxonomy of Viruses (ICTV).
Abstract: In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).

404 citations

Journal ArticleDOI
TL;DR: In this article, a multivariable logistic regression was used to assess influence of transfusion on outcomes, while adjusting for transfusion propensity, procedure type, wound class, operative duration, and 30+ patient risk factors.
Abstract: Background Transfusion of packed red blood cells (PRBCs) increases morbidity and mortality in select surgical specialty patients. The impact of low-volume, leukoreduced RBC transfusion on general surgery patients is less well understood. Study Design The American College of Surgeons National Surgical Quality Improvement Program participant use file was queried for general surgery patients recorded in 2005 to 2006 (n = 125,223). Thirty-day morbidity (21 uniformly defined complications) and mortality, demographic, preoperative, and intraoperative risk variables were obtained. Infectious complications and composite morbidity and mortality were stratified across intraoperative PRBCs units received. Multivariable logistic regression was used to assess influence of transfusion on outcomes, while adjusting for transfusion propensity, procedure type, wound class, operative duration, and 30+ patient risk factors. Results After adjustment for transfusion propensity, procedure group, wound class, operative duration, and all other important risk variables, 1 U PRBCs significantly (p Conclusions Intraoperative transfusion of PRBCs increases risk for mortality and several morbidities in general surgery patients. These risks, substantial for even 1 U, remain after adjustment for transfusion propensity and numerous risk factors available in the American College of Surgeons National Surgical Quality Improvement Program. Transfusion for mildly hypovolemic or anemic patients should be discouraged in light of these risks.

404 citations


Authors

Showing all 44305 results

NameH-indexPapersCitations
Mark P. Mattson200980138033
Carlo M. Croce1981135189007
Charles A. Dinarello1901058139668
Richard A. Gibbs172889249708
Gang Chen1673372149819
David A. Bennett1671142109844
Carl W. Cotman165809105323
Rodney S. Ruoff164666194902
David Tilman158340149473
David Cella1561258106402
Richard E. Smalley153494111117
Deepak L. Bhatt1491973114652
Kevin Murphy146728120475
Jian Yang1421818111166
Thomas J. Smith1401775113919
Network Information
Related Institutions (5)
University of Minnesota
257.9K papers, 11.9M citations

98% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

97% related

University of Pittsburgh
201K papers, 9.6M citations

96% related

Cornell University
235.5K papers, 12.2M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023108
2022532
20214,329
20204,216
20193,965
20183,605