scispace - formally typeset
Search or ask a question
Institution

University of Kentucky

EducationLexington, Kentucky, United States
About: University of Kentucky is a education organization based out in Lexington, Kentucky, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 43933 authors who have published 92195 publications receiving 3256087 citations. The organization is also known as: UK.


Papers
More filters
Journal ArticleDOI
21 Mar 2008-Science
TL;DR: It is found that dislocations accelerate the diffusion of impurities by almost three orders of magnitude as compared with bulk diffusion.
Abstract: Diffusion of atoms in a crystalline lattice is a thermally activated process that can be strongly accelerated by defects such as grain boundaries or dislocations. When carried by dislocations, this elemental mechanism is known as "pipe diffusion." Pipe diffusion has been used to explain abnormal diffusion, Cottrell atmospheres, and dislocation-precipitate interactions during creep, although this rests more on conjecture than on direct demonstration. The motion of dislocations between silicon nanoprecipitates in an aluminum thin film was recently observed and controlled via in situ transmission electron microscopy. We observed the pipe diffusion phenomenon and measured the diffusivity along a single dislocation line. It is found that dislocations accelerate the diffusion of impurities by almost three orders of magnitude as compared with bulk diffusion.

375 citations

Journal ArticleDOI
TL;DR: Results from multiple species support the antioxidant/anti-inflammatory properties of the prototype compound, astaxanthin, establishing it as an appropriate candidate for development as a therapeutic agent for cardiovascular oxidative stress and inflammation.
Abstract: Oxidative stress and inflammation are implicated in several different manifestations of cardiovascular disease (CVD). They are generated, in part, from the overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that activate transcriptional messengers, such as nuclear factor-kappaB, tangibly contributing to endothelial dysfunction, the initiation and progression of atherosclerosis, irreversible damage after ischemic reperfusion, and even arrhythmia, such as atrial fibrillation. Despite this connection between oxidative stress and CVD, there are currently no recognized therapeutic interventions to address this important unmet need. Antioxidants that provide a broad, "upstream" approach via ROS/RNS quenching or free radical chain breaking seem an appropriate therapeutic option based on epidemiologic, dietary, and in vivo animal model data. However, human clinical trials with several different well-known agents, such as vitamin E and beta-carotene, have been disappointing. Does this mean antioxidants as a class are ineffective, or rather that the "right" compound(s) have yet to be found, their mechanisms of action understood, and their appropriate targeting and dosages determined? A large class of potent naturally-occurring antioxidants exploited by nature-the oxygenated carotenoids (xanthophylls)-have demonstrated utility in their natural form but have eluded development as successful targeted therapeutic agents up to the present time. This article characterizes the mechanism by which this novel group of antioxidants function and reviews their preclinical development. Results from multiple species support the antioxidant/anti-inflammatory properties of the prototype compound, astaxanthin, establishing it as an appropriate candidate for development as a therapeutic agent for cardiovascular oxidative stress and inflammation.

375 citations

Journal ArticleDOI
TL;DR: It is proposed that the most effective approach to interrupt posttraumatic oxidative brain damage after TBI might involve the combined treatment with mechanistically complementary antioxidants that simultaneously scavenge LP-initiating free radicals, inhibit LP propagation, and lastly remove neurotoxic LP byproducts.

374 citations

Journal ArticleDOI
TL;DR: Increased modification of proteins by 4‐hydroxynoneal (HNE), a product of membrane lipid peroxidation, in the lumbar spinal cord of sporadic amyotrophic lateral sclerosis patients versus that of neurologically normal controls is reported.
Abstract: We report increased modification of proteins by 4-hydroxynonenal (HNE), a product of membrane lipid peroxidation, in the lumbar spinal cord of sporadic amyotrophic lateral sclerosis (ALS) patients versus that of neurologically normal controls. By immunohistochemistry, HNE-protein modification was detected in ventral horn motor neurons, and immunoprecipitation analysis revealed that one of the proteins modified by HNE was the astrocytic glutamate transporter EAAT2. Given that the function of proteins modified by HNE can be severely compromised as previously demonstrated for glutamate transporters in cortical synaptosome preparations, our findings suggest a scenario in which oxidative stress leads to the production of HNE, impairment of glutamate transport, and excitotoxic motor neuron degeneration in ALS.

374 citations


Authors

Showing all 44305 results

NameH-indexPapersCitations
Mark P. Mattson200980138033
Carlo M. Croce1981135189007
Charles A. Dinarello1901058139668
Richard A. Gibbs172889249708
Gang Chen1673372149819
David A. Bennett1671142109844
Carl W. Cotman165809105323
Rodney S. Ruoff164666194902
David Tilman158340149473
David Cella1561258106402
Richard E. Smalley153494111117
Deepak L. Bhatt1491973114652
Kevin Murphy146728120475
Jian Yang1421818111166
Thomas J. Smith1401775113919
Network Information
Related Institutions (5)
University of Minnesota
257.9K papers, 11.9M citations

98% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

97% related

University of Pittsburgh
201K papers, 9.6M citations

96% related

Cornell University
235.5K papers, 12.2M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023108
2022532
20214,329
20204,216
20193,965
20183,605