scispace - formally typeset
Search or ask a question
Institution

University of Kiel

EducationKiel, Germany
About: University of Kiel is a education organization based out in Kiel, Germany. It is known for research contribution in the topics: Population & Crystal structure. The organization has 27816 authors who have published 57114 publications receiving 2061802 citations. The organization is also known as: Christian Albrechts University & Christian-Albrechts-Universität zu Kiel.


Papers
More filters
Journal ArticleDOI
TL;DR: The circular arrangement of collagen fibrils in the central portion of the meniscus provides a functional explanation for the longitudinal orientation of the majority of tears in the menisci tissue.
Abstract: Anatomical and clinical literature describes the arrangement of collagen fibrils in the human meniscus as being "arcade-like". The "arcade-like" orientation, mainly running in a radial direction in the internal circumference and in a circular direction in the external circumference, was found in polarization light microscopic studies. This, however, does not provide a mechanical explanation for the direction of meniscus tears. In view of this contradiction collagen fibrils in the menisci of adults aged from 18 to 85 years were exposed layer-by-layer to study their arrangement by scanning electron microscopy. The results obtained by this procedure were compared to the path of the split lines. Scanning electron microscopy reveals three distinct layers in the meniscus cross section: (1) The tibial and femoral sides of the meniscus surfaces are covered by a meshwork of thin fibrils with a diameter of approximately 30 nm. (2) Beneath the superficial network there is a layer of lamellalike collagen fibril bundles on the tibial and femoral surface. In the area of the external circumference of the anterior and posterior segments the bundles of collagen fibrils are arranged in a radial direction. In all other parts the collagen fibril bundles intersect at various angles. (3) The main portion of the meniscus collagen fibrils are located in the central region between the femoral and the tibial surface layers. Everywhere in the central main portion of the meniscus the bundles of collagen fibrils are orientated in a circular manner. The split lines in the region of the internal circumference of the menisci are arranged in a circular manner, generally running in a radial direction in the portions adjacent to the base. Scanning electron microscopy reveals that the direction of the split lines depends on the orientation of the collagen fibrils in the superficial lamellar layer. The arcade-like path of the collagen fibrils described in the literature can not be confirmed either by scanning electron microscopy or by the course of the split lines. The circular arrangement of collagen fibrils in the central portion of the meniscus provides a functional explanation for the longitudinal orientation of the majority of tears in the meniscus tissue.

374 citations

Journal ArticleDOI
TL;DR: The results for light rare earth elements appear to be systematically low in comparison with the published working values as mentioned in this paper, which may be due to the fact that the ICP-MS data for geological rock standards presented here agree well with certified values.
Abstract: Thirty-seven trace elements, including rare-earth elements, have been determined by ICP-MS in twenty-eight international rock standards using routine sample preparation techniques. Samples were decomposed by either pressurized HF-HCIO4-aqua regia attack, or by lithium borate fusion. Generally, the ICP-MS data for geological rock standards presented here agree well with certified values. However, the results for light rare earth elements appear to be systematically low in comparison with the published working values.

374 citations

Journal ArticleDOI
TL;DR: The DNA methylation patterns identified across the largest spectrum of samples, tissues, and diseases reported to date constitute a baseline for developing higher-resolutionDNA methylation maps and provide important clues concerning the contribution of CpG methylation to tissue identity and its changes in the most prevalent human diseases.
Abstract: Most of the studies characterizing DNA methylation patterns have been restricted to particular genomic loci in a limited number of human samples and pathological conditions. Herein, we present a compromise between an extremely comprehensive study of a human sample population with an intermediate level of resolution of CpGs at the genomic level. We obtained a DNA methylation fingerprint of 1628 human samples in which we interrogated 1505 CpG sites. The DNA methylation patterns revealed show this epigenetic mark to be critical in tissue-type definition and stemness, particularly around transcription start sites that are not within a CpG island. For disease, the generated DNA methylation fingerprints show that, during tumorigenesis, human cancer cells underwent a progressive gain of promoter CpG-island hypermethylation and a loss of CpG methylation in non-CpG-island promoters. Although transformed cells are those in which DNA methylation disruption is more obvious, we observed that other common human diseases, such as neurological and autoimmune disorders, had their own distinct DNA methylation profiles. Most importantly, we provide proof of principle that the DNA methylation fingerprints obtained might be useful for translational purposes by showing that we are able to identify the tumor type origin of cancers of unknown primary origin (CUPs). Thus, the DNA methylation patterns identified across the largest spectrum of samples, tissues, and diseases reported to date constitute a baseline for developing higher-resolution DNA methylation maps and provide important clues concerning the contribution of CpG methylation to tissue identity and its changes in the most prevalent human diseases.

374 citations

Journal ArticleDOI
TL;DR: Diverse fungal species are part of the normal enteric microbiota, but diversity is increased and composition of the fungal communities varies in IBD.
Abstract: Objective. Altered bacterial diversity of the intestinal mucosa-associated microbiota may reflect the net influence of lifestyle factors associated with the development of chronic inflammatory bowel diseases (IBD). While a reduced bacterial diversity has been reported in IBD, little is known about the fungal microbiota. The aim of this study was to carry out a systematic analysis of intestinal fungal microbiota in IBD. Material and methods. The mucosa-associated fungal microbiota of 104 colonic biopsy tissues from 47 controls and 57 IBD patients was investigated using metagenomic 18S rDNA-based denaturing gradient gel electrophoresis (DGGE), clone libraries, sequencing, and in situ hybridization techniques. Results. Fungi-specific 18S rDNA signatures could be detected in all 104 patients, accounting for only a small proportion of the intestinal microbiota (0.02% of the mucosal and 0.03% of the fecal microbiota). An overall fungal biodiversity of 43 different operational taxonomic units (OTUs) was found in...

374 citations

Journal ArticleDOI
TL;DR: Novel data is provided on the diversity, ecology, and description of bacterial family S24-7, for which the name Muribaculaceae is proposed.
Abstract: Bacteria within family S24-7 (phylum Bacteroidetes) are dominant in the mouse gut microbiota and detected in the intestine of other animals. Because they had not been cultured until recently and the family classification is still ambiguous, interaction with their host was difficult to study and confusion still exists regarding sequence data annotation. We investigated family S24-7 by combining data from large-scale 16S rRNA gene analysis and from functional and taxonomic studies of metagenomic and cultured species. A total of 685 species was inferred by full-length 16S rRNA gene sequence clustering. While many species could not be assigned ecological habitats (93,045 samples analyzed), the mouse was the most commonly identified host (average of 20% relative abundance and nine co-occurring species). Shotgun metagenomics allowed reconstruction of 59 molecular species, of which 34 were representative of the 16S rRNA gene-derived species clusters. In addition, cultivation efforts allowed isolating five strains representing three species, including two novel taxa. Genome analysis revealed that S24-7 spp. are functionally distinct from neighboring families and versatile with respect to complex carbohydrate degradation. We provide novel data on the diversity, ecology, and description of bacterial family S24-7, for which the name Muribaculaceae is proposed.

374 citations


Authors

Showing all 28103 results

NameH-indexPapersCitations
Stefan Schreiber1781233138528
Jun Wang1661093141621
William J. Sandborn1621317108564
Jens Nielsen1491752104005
Tak W. Mak14880794871
Annette Peters1381114101640
Severine Vermeire134108676352
Peter M. Rothwell13477967382
Dusan Bruncko132104284709
Gideon Bella129130187905
Dirk Schadendorf1271017105777
Neal L. Benowitz12679260658
Thomas Schwarz12370154560
Meletios A. Dimopoulos122137171871
Christian Weber12277653842
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

University of Padua
114.8K papers, 3.6M citations

94% related

Heidelberg University
119.1K papers, 4.6M citations

94% related

University of Bologna
115.1K papers, 3.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023197
2022421
20212,761
20202,644
20192,556
20182,247