scispace - formally typeset
Search or ask a question
Institution

University of Kiel

EducationKiel, Germany
About: University of Kiel is a education organization based out in Kiel, Germany. It is known for research contribution in the topics: Population & Transplantation. The organization has 27816 authors who have published 57114 publications receiving 2061802 citations. The organization is also known as: Christian Albrechts University & Christian-Albrechts-Universität zu Kiel.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors synthesize existing clay mineralogical and geochemical data from similar to 1500 samples from the seafloor and surrounding rivers, deepwater mooring observation results, and high resolution glacial-cyclic clay mineralogy records from six high-quality sediment cores.

329 citations

Journal ArticleDOI
TL;DR: In this article, the effect of soil aggregation on soil physical and chemical properties of structured soils both on a bulk soil scale, for single aggregates, as well as for homogenized material is clarified.
Abstract: The aim of this paper is to clarify the effect of soil aggregation on soil physical and chemical properties of structured soils both on a bulk soil scale, for single aggregates, as well as for homogenized material. Aggregate formation and aggregate strength depend on swelling and shrinkage processes and on biological activity and kinds of organic exudates as well as on the intensity, number and time of swelling and drying events. Such aggregates are, most of all, more dense than the aggregated bulk soil. The intra-aggregate pore distribution consists not only of finer pores but these are also more tortuous. Thus, water fluxes in aggregated soils are mostly multidimensional and the corresponding water fluxes in the intra-aggregate pore system are much smaller. Furthermore, ion transport by mass flow as well as by diffusion are delayed, whereby the length of the flow path in such tortuous finer pores further retards chemical exchange processes. The chemical composition of the percolating soil solution differs even more from that of the corresponding homogenized material the stronger and denser the aggregates are. The rearrangement of particles by aggregate formation also induces an increased apparent thermal diffusivity as compared with the homogenized material. The aggregate formation also affects the aeration and the gaseous composition of the intra-aggregate pore space. Depending on the kind and intensity of aggregation, the intra-aggregate pores can be completely anoxic, while the inter-aggregate pores are already completely aerated. The higher the amount of dissolved organic carbon in the percolating soil solution, the more pronounced is the difference between the gaseous composition in the inter- and in the intra-aggregate pore system. From the mechanical point of view, the strength single aggregates, determined as the angle of internal friction and cohesion, depends on the number of contact points or the forces, which can be transmitted at each single contact point. The more structured soils are, the higher the proportion of the effective stress on the total stress is, but even in single aggregates positive pore water pressure values can be revealed. Dynamic forces e.g. due to wheeling and/or slip processes can affect the pore system as well as the composition of the soil by: (1) a rearrangement of single aggregates in the existing inter-aggregate pore system resulting in an increased bulk density and a less aerated and less rootable soil volume, (2) a complete homogenization, i.e. aggregate deterioration due to shearing. Thus, the smaller texture dependent soil strength coincides with a more intensive soil compaction due to loading. (3) Aggregate deterioration due to shearing results in a complete homogenization, if excess soil water is available owing to kneading as soon as the octahedral shear stresses and the mean normal stresses exceed the stress state defined by the Mohr-Coulomb failure line. Consequently, normal shrinkage processes start again. Thus, the rearrangement of particles and the formation of well defined single aggregates even at the same bulk density of the bulk soil both affect, to a great extent, various ecological parameters. Environmental aspects can also be correlated, or at least explained with the processes in soils, as a major compartment of terrestial ecosystems, if the physical and chemical properties of the structure elements and their composition in the bulk soil are understood.

328 citations

Journal ArticleDOI
TL;DR: In this paper, the main flow of the Kuroshio Current was inferred to re-enter the Okinawa Trough at ∼7.3 calendar (cal.) kyr BP, leading to abrupt changes in sedimentation rate, remarkably increased abundance of Pulleniatina obliquiloculata, increased sea surface temperature (SST) and depth of thermocline (DOT).

328 citations


Authors

Showing all 28103 results

NameH-indexPapersCitations
Stefan Schreiber1781233138528
Jun Wang1661093141621
William J. Sandborn1621317108564
Jens Nielsen1491752104005
Tak W. Mak14880794871
Annette Peters1381114101640
Severine Vermeire134108676352
Peter M. Rothwell13477967382
Dusan Bruncko132104284709
Gideon Bella129130187905
Dirk Schadendorf1271017105777
Neal L. Benowitz12679260658
Thomas Schwarz12370154560
Meletios A. Dimopoulos122137171871
Christian Weber12277653842
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

University of Padua
114.8K papers, 3.6M citations

94% related

Heidelberg University
119.1K papers, 4.6M citations

94% related

University of Bologna
115.1K papers, 3.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023197
2022421
20212,760
20202,643
20192,556
20182,247