scispace - formally typeset
Search or ask a question
Institution

University of Kiel

EducationKiel, Germany
About: University of Kiel is a education organization based out in Kiel, Germany. It is known for research contribution in the topics: Population & Transplantation. The organization has 27816 authors who have published 57114 publications receiving 2061802 citations. The organization is also known as: Christian Albrechts University & Christian-Albrechts-Universität zu Kiel.


Papers
More filters
Journal ArticleDOI
TL;DR: The EU-funded BLUEPRINT consortium that will generate epigenomic maps of at least 100 different blood cell types aims to bridge the gap in current knowledge between individual components of the epigenome and their functional dynamics through state-of-the-art analysis in a defined set of primarily human hematopoietic cells from healthy and diseased individuals.
Abstract: volume 30 number 3 march 2012 nature biotechnology To the Editor: Last October, scientists gathered in Amsterdam to celebrate the start of BLUEPRINT (http://www.blueprintepigenome.eu/), an EU-funded consortium that will generate epigenomic maps of at least 100 different blood cell types. With this initiative, Europe has pledged a substantial contribution to the ultimate goal of the International Human Epigenome Consortium (IHEC) to map 1,000 human epigenomes. Here, we provide a brief background to the scientific questions that prompted the formation of BLUEPRINT, summarize the overall goals of BLUEPRINT and detail the specific areas in which the consortium will focus its initial efforts and resources. In mammals, nucleated cells share the same genome but have different epigenomes depending on the cell type and many other factors, resulting in an astounding diversity in phenotypic plasticity with respect to morphology and function. This diversity is defined by cell-specific patterns of gene expression, which are controlled through regulatory sites in the genome to which transcription factors bind. In eukaryotes, access to these sites is orchestrated via chromatin, the complex of DNA, RNA and proteins that constitutes the functional platform of the genome. In contrast with DNA, chromatin is not static but highly dynamic, particularly through modifications of histones at nucleosomes and cytosines at the DNA level that together define the epigenome, the epigenetic state of the cell. Advances in new genomics technologies, particularly next-generation sequencing, allow the epigenome to be studied in a holistic fashion, leading to a better understanding of chromatin function and functional annotation of the genome. Yet little is known about how epigenetic characteristics vary between different cell types, in health and disease or among individuals. This lack of a quantitative framework for the dynamics of the epigenome and its determinants is a major hurdle for the translation of epigenetic observations into regulatory models, the identification of associations between epigenotypes and diseases, and the subsequent development of new classes of compounds for disease prevention and treatment. The task, however, is daunting as each of the several hundred cell types in the human body is expected to show specific epigenomic features that are further expected to respond to environmental inputs in time and space. The research community has realized these limitations and the need for concerted action. The IHEC was founded to coordinate large-scale international efforts toward the goal of a comprehensive human epigenome reference atlas (http://www.ihec-epigenomes. org/). The IHEC will coordinate epigenomic mapping and characterization worldwide to avoid redundant research efforts, implement high data quality standards, coordinate data storage, management and analysis, and provide free access to the epigenomes produced. The maps generated under the umbrella of the IHEC contain detailed information on DNA methylation, histone modification, nucleosome occupancy, and corresponding coding and noncoding RNA expression in different normal and diseased cell types. This will allow integration of different layers of epigenetic information for a wide variety of distinct cell types and thus provide a resource for both basic and applied research. BLUEPRINT aims to bridge the gap in our current knowledge between individual components of the epigenome and their functional dynamics through state-of-the-art analysis in a defined set of primarily human hematopoietic cells from healthy and diseased individuals. Mammalian blood formation or hematopoiesis is one of the best-studied systems of stem cell biology. Blood formation can be viewed as a hierarchical process, and classically, differentiation is defined to occur along the myeloid and lymphoid lineages. The identity of cellular intermediates and the geometry of branch points are still under intense investigation and therefore provide a paradigm for delineation of fundamental principles of cell fate determination and regulation of proliferation and lifespan, which differ considerably between different types of blood cells. BLUEPRINT will generate reference epigenomes of at least 50 specific blood cell types and their malignant counterparts and aim to provide high-quality reference epigenomes of primary cells from >60 individuals with detailed genetic and, where appropriate, medical records. To account for and quantify the impact of DNA sequence variation on epigenome differences, BLUEPRINT will work whenever possible on samples of known genetic variation, including samples from the Cambridge BioResource (Cambridge, UK), the International Cancer Genome Consortium and the British Diabetic Twin Study for disease-discordant monozygotic twin samples. The Wellcome Trust Sanger Institute (Hinxton, UK) will also provide full genomic sequencing for up to 100 samples. BLUEPRINT will harness existing proven technologies to generate reference epigenomes, including RNA-Seq for transcriptome analysis, bisulfite sequencing for methylome analysis, DNaseI-Seq for analysis of hypersensitive sites and ChIPSeq for analysis of at least six histone marks. Moreover, BLUEPRINT aims to develop new technologies to enhance high-throughput epigenome mapping, particularly when using few cells. BLUEPRINT is initially focusing on four main areas. One main goal of the project is to comprehensively analyze diverse epigenomic maps and make them available as an integrated BLUEPRINT-IHEC resource to the scientific community. Integration is envisioned for related projects within species (e.g., the 1000 Genomes Project) and between species (e.g., modENCODE) to better understand functional aspects (e.g., shared pathways) and the evolution of cell lineage development. Analysis of the BLUEPRINT data is expected to catalyze a better understanding of the relationship between epigenetic and genomic information and will form the basis for generation of new methods (e.g., epigenetic imputation) for prediction of epigenetic states from epigenomic profiles. Such prediction methods will facilitate a move toward a more quantitative knowledge and modeling of epigenetic mechanisms. As a result, such models could in the future assist in ‘reverse engineering’ of regulatory networks to repair or restore epigenetic codes that have been perturbed by disease. A second goal of BLUEPRINT is to systematically link epigenetic variation with phenotypic plasticity in health and disease. This will be attempted in three ways. First, genetic and epigenetic varation in two blood cell types from 100 healthy individuals will be analyzed. These measurements will be combined with whole-genome and transcriptome sequencing to dissect the interplay between common DNA sequence BLUEPRINT to decode the epigenetic signature written in blood CORRESPONDENCE

314 citations

Journal ArticleDOI
TL;DR: Several microscopic (agent-based) models of financial markets which have been studied by economists and physicists over the last decade: Kim-Markowitz, Levy-Levy-Solomon, Cont-Bouchaud, Solomon-Weisbuch, Lux-Marchesi, Donangelo- Sneppen and Solomon-Lenz-Huang as mentioned in this paper.
Abstract: This review deals with several microscopic (‘agent-based’) models of financial markets which have been studied by economists and physicists over the last decade: Kim–Markowitz, Levy–Levy–Solomon, Cont–Bouchaud, Solomon–Weisbuch, Lux–Marchesi, Donangelo– Sneppen and Solomon–Levy–Huang. After an overview of simulation approaches in financial economics, we first give a summary of the Donangelo–Sneppen model of monetary exchange and compare it with related models in economics literature. Our selective review then outlines the main ingredients of some influential early models of multi-agent dynamics in financial markets (Kim–Markowitz, Levy–Levy–Solomon). As will be seen, these contributions draw their inspiration from the complex appearance of investors’ interactions in real-life markets. Their main aim is to reproduce (and, thereby, provide possible explanations) for the spectacular bubbles and crashes seen in certain historical episodes, but they lack (like almost all the work before 1998 or so) a perspective in terms of the universal statistical features of financial time series. In fact, awareness of a set of such regularities (power-law tails of the distribution of returns, temporal scaling of volatility) only gradually appeared over the nineties. With the more precise description of the formerly relatively vague characteristics (e.g. moving from the notion of fat tails to the more concrete one of a power law with index around three), it became clear that financial market dynamics give rise to some kind of universal scaling law. Showing similarities with scaling laws for other systems with many interacting sub-units, an exploration of financial markets as multi-agent systems appeared to be a natural consequence. This topic has been pursued by quite a number of contributions appearing in both the physics and economics literature since the late nineties. From the wealth of different flavours of multi-agent models that have appeared up to now, we discuss the Cont–Bouchaud, Solomon–Levy–Huang and Lux–Marchesi models. Open research questions are discussed in our concluding section. 4 Now at Deutsche Bundesbank. The opinions expressed in this review are those of the authors, not those of the banks.

314 citations

Journal ArticleDOI
TL;DR: Adjuvant treatment that includes L did not significantly improve DFS compared with T alone and added toxicity, and one year of adjuvant T remains standard of care.
Abstract: BackgroundLapatinib (L) plus trastuzumab (T) improves outcomes for metastatic human epidermal growth factor 2–positive breast cancer and increases the pathologic complete response in the neoadjuvant setting, but their role as adjuvant therapy remains uncertain.MethodsIn the Adjuvant Lapatinib and/or Trastuzumab Treatment Optimization trial, patients with centrally confirmed human epidermal growth factor 2–positive early breast cancer were randomly assigned to 1 year of adjuvant therapy with T, L, their sequence (T→L), or their combination (L+T). The primary end point was disease-free survival (DFS), with 850 events required for 80% power to detect a hazard ratio (HR) of 0.8 for L+T versus T.ResultsBetween June 2007 and July 2011, 8,381 patients were enrolled. In 2011, due to futility to demonstrate noninferiority of L versus T, the L arm was closed, and patients free of disease were offered adjuvant T. A protocol modification required P ≤ .025 for the two remaining pairwise comparisons. At a protocol-spec...

314 citations

Journal ArticleDOI
TL;DR: Feed experiments with the dominant herbivorous copepods Calanus finmarchicus, C. hyperboreus and C. glacialis from the Greenland Sea during two Arctic expeditions in June/July 1991 provide clear evidence for the potential of specific fatty acids as trophic marker lipids.

314 citations

Journal ArticleDOI
TL;DR: It is shown, using the specific example of Parkinson disease, that identification of protein–protein interactions can help determine the most likely candidate for several GWAS loci, and proposed that three different genes for PD have a common biological function.
Abstract: Mutations in leucine-rich repeat kinase 2 (LRRK2) cause inherited Parkinson disease (PD), and common variants around LRRK2 are a risk factor for sporadic PD. Using protein–protein interaction arrays, we identified BCL2-associated athanogene 5, Rab7L1 (RAB7, member RAS oncogene family-like 1), and Cyclin-G–associated kinase as binding partners of LRRK2. The latter two genes are candidate genes for risk for sporadic PD identified by genome-wide association studies. These proteins form a complex that promotes clearance of Golgi-derived vesicles through the autophagy–lysosome system both in vitro and in vivo. We propose that three different genes for PD have a common biological function. More generally, data integration from multiple unbiased screens can provide insight into human disease mechanisms.

314 citations


Authors

Showing all 28103 results

NameH-indexPapersCitations
Stefan Schreiber1781233138528
Jun Wang1661093141621
William J. Sandborn1621317108564
Jens Nielsen1491752104005
Tak W. Mak14880794871
Annette Peters1381114101640
Severine Vermeire134108676352
Peter M. Rothwell13477967382
Dusan Bruncko132104284709
Gideon Bella129130187905
Dirk Schadendorf1271017105777
Neal L. Benowitz12679260658
Thomas Schwarz12370154560
Meletios A. Dimopoulos122137171871
Christian Weber12277653842
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

University of Padua
114.8K papers, 3.6M citations

94% related

Heidelberg University
119.1K papers, 4.6M citations

94% related

University of Bologna
115.1K papers, 3.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023197
2022421
20212,760
20202,643
20192,556
20182,247