scispace - formally typeset
Search or ask a question
Institution

University of Kiel

EducationKiel, Germany
About: University of Kiel is a education organization based out in Kiel, Germany. It is known for research contribution in the topics: Population & Transplantation. The organization has 27816 authors who have published 57114 publications receiving 2061802 citations. The organization is also known as: Christian Albrechts University & Christian-Albrechts-Universität zu Kiel.


Papers
More filters
Journal ArticleDOI
15 Aug 2003-Blood
TL;DR: It is demonstrated that ADAM10 is involved in the constitutive cleavage of CX3CL1 and thereby may regulate the recruitment of monocytic cells to CX2CL1-expressing cell layers and prevent de-adhesion of bound THP-1 cells.

669 citations

Journal ArticleDOI
TL;DR: A mechanistic model to explain the activity of Fer-1 was developed, which guided the development of ferrostatins with improved properties, and that lipid peroxidation mediates diverse disease phenotypes are suggested.
Abstract: Ferrostatin-1 (Fer-1) inhibits ferroptosis, a form of regulated, oxidative, nonapoptotic cell death. We found that Fer-1 inhibited cell death in cellular models of Huntington’s disease (HD), periventricular leukomalacia (PVL), and kidney dysfunction; Fer-1 inhibited lipid peroxidation, but not mitochondrial reactive oxygen species formation or lysosomal membrane permeability. We developed a mechanistic model to explain the activity of Fer-1, which guided the development of ferrostatins with improved properties. These studies suggest numerous therapeutic uses for ferrostatins, and that lipid peroxidation mediates diverse disease phenotypes.

668 citations

Journal ArticleDOI
TL;DR: In this article, a chemo-thermo-dynamic subduction zone model was proposed to solve for slab dehydration during subduction, and the authors investigated how changes in the incoming plate's hydration and thermal structure may effect the efficiency of sub-arc water release from sediments, crust, and serpentinized mantle.

668 citations

Journal ArticleDOI
TL;DR: The research concept and methodological framework presented here for discussion have initially been applied in different case studies and shall be developed further to provide a useful tool for the quantification and spatial modelling of multiple ecosystem services in different landscapes.
Abstract: Landscapes differ in their capacities to provide ecosystem goods and services, which are the benefits humans obtain from nature. Structures and functions of ecosystems needed to sustain the provision of ecosystem services are altered by various human activities. In this paper, a concept for the assessment of multiple ecosystem services is proposed as a basis for discussion and further development of a respective evaluation instrument. Using quantitative and qualitative assessment data in combination with land cover and land use information originated from remote sensing and GIS, impacts of human activities can be evaluated. The results reveal typical patterns of different ecosystems‘ capacities to provide ecosystem services. The proposed approach thus delivers useful integrative information for environmental management and landscape planning, aiming at a sustainable use of services provided by nature. The research concept and methodological framework presented here for discussion have initially been applied in different case studies and shall be developed further to provide a useful tool for the quantification and spatial modelling of multiple ecosystem services in different landscapes. An exemplary application of the approach dealing with food provision in the Halle-Leipzig region in Germany is presented. It shows typical patterns of ecosystem service distribution around urban areas. As the approach is new and still rather general, there is great potential for improvement, especially with regard to a data-based quantification of the numerous hypotheses, which were formulated as base for the assessment. Moreover, the integration of more detailed landscape information on different scales will be needed in future in order to take the heterogeneous distribution of landscape properties and values into account. Therefore, the purpose of this paper is to foster critical discussions on the methodological development presented here.

667 citations

Journal ArticleDOI
Simone Wahl, Alexander W. Drong1, Benjamin Lehne2, Marie Loh3, Marie Loh2, Marie Loh4, William R. Scott2, William R. Scott5, Sonja Kunze, Pei-Chien Tsai6, Janina S. Ried, Weihua Zhang7, Weihua Zhang2, Youwen Yang2, Sili Tan8, Giovanni Fiorito9, Lude Franke10, Simonetta Guarrera9, Silva Kasela11, Jennifer Kriebel, Rebecca C Richmond12, Marco Adamo13, Uzma Afzal2, Uzma Afzal7, Mika Ala-Korpela14, Mika Ala-Korpela3, Mika Ala-Korpela12, Benedetta Albetti15, Ole Ammerpohl16, Jane F. Apperley2, Marian Beekman17, Pier Alberto Bertazzi15, S. Lucas Black2, Christine Blancher1, Marc Jan Bonder10, Mario Brosch18, Maren Carstensen-Kirberg19, Anton J. M. de Craen17, Simon de Lusignan20, Abbas Dehghan21, Mohamed Elkalaawy13, Krista Fischer11, Oscar H. Franco21, Tom R. Gaunt12, Jochen Hampe18, Majid Hashemi13, Aaron Isaacs21, Andrew Jenkinson13, Sujeet Jha22, Norihiro Kato, Vittorio Krogh, Michael Laffan2, Christa Meisinger, Thomas Meitinger23, Zuan Yu Mok8, Valeria Motta15, Hong Kiat Ng8, Zacharoula Nikolakopoulou5, Georgios Nteliopoulos2, Salvatore Panico24, Natalia Pervjakova11, Holger Prokisch23, Wolfgang Rathmann19, Michael Roden19, Federica Rota15, Michelle Ann Rozario8, Johanna K. Sandling25, Johanna K. Sandling26, Clemens Schafmayer, Katharina Schramm23, Reiner Siebert16, Reiner Siebert27, P. Eline Slagboom17, Pasi Soininen3, Pasi Soininen14, Lisette Stolk21, Konstantin Strauch28, E-Shyong Tai8, Letizia Tarantini15, Barbara Thorand, Ettje F. Tigchelaar10, Rosario Tumino, André G. Uitterlinden21, Cornelia M. van Duijn21, Joyce B. J. van Meurs21, Paolo Vineis, Ananda R. Wickremasinghe29, Cisca Wijmenga10, Tsun-Po Yang26, Wei Yuan30, Wei Yuan6, Alexandra Zhernakova10, Rachel L. Batterham13, George Davey Smith12, Panos Deloukas31, Panos Deloukas26, Panos Deloukas32, Bastiaan T. Heijmans17, Christian Herder19, Albert Hofman21, Cecilia M. Lindgren1, Cecilia M. Lindgren33, Lili Milani11, Pim van der Harst10, Annette Peters, Thomas Illig, Caroline L Relton12, Melanie Waldenberger, Marjo-Riitta Järvelin34, Valentina Bollati15, Richie Soong8, Tim D. Spector6, James Scott5, Mark I. McCarthy35, Mark I. McCarthy36, Mark I. McCarthy1, Paul Elliott37, Paul Elliott2, Jordana T. Bell6, Giuseppe Matullo9, Christian Gieger, Jaspal S. Kooner5, Harald Grallert, John C. Chambers 
05 Jan 2017-Nature
TL;DR: In this article, the authors used epigenome-wide association to show that body mass index (BMI), a key measure of adiposity, is associated with widespread changes in DNA methylation.
Abstract: Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type 2 diabetes, cardiovascular disease and related metabolic and inflammatory disturbances1,2. Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation3,4,5,6, a key regulator of gene expression and molecular phenotype7. Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 × 10−7, range P = 9.2 × 10−8 to 6.0 × 10−46; n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 × 10−6, range P = 5.5 × 10−6 to 6.1 × 10−35, n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07–2.56); P = 1.1 × 10−54). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.

667 citations


Authors

Showing all 28103 results

NameH-indexPapersCitations
Stefan Schreiber1781233138528
Jun Wang1661093141621
William J. Sandborn1621317108564
Jens Nielsen1491752104005
Tak W. Mak14880794871
Annette Peters1381114101640
Severine Vermeire134108676352
Peter M. Rothwell13477967382
Dusan Bruncko132104284709
Gideon Bella129130187905
Dirk Schadendorf1271017105777
Neal L. Benowitz12679260658
Thomas Schwarz12370154560
Meletios A. Dimopoulos122137171871
Christian Weber12277653842
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

University of Padua
114.8K papers, 3.6M citations

94% related

Heidelberg University
119.1K papers, 4.6M citations

94% related

University of Bologna
115.1K papers, 3.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023197
2022421
20212,760
20202,643
20192,556
20182,247