scispace - formally typeset
Search or ask a question
Institution

University of Kiel

EducationKiel, Germany
About: University of Kiel is a education organization based out in Kiel, Germany. It is known for research contribution in the topics: Population & Crystal structure. The organization has 27816 authors who have published 57114 publications receiving 2061802 citations. The organization is also known as: Christian Albrechts University & Christian-Albrechts-Universität zu Kiel.


Papers
More filters
Journal ArticleDOI
TL;DR: Recombinant sgp130 protein could be used to block the anti-apoptotic effect of sIL-6R on lamina propria cells from Crohn disease patients and is expected to be a valuable therapeutic tool to specifically block disease states in which sIL -6R transsignaling responses exist, e.g. in morbusCrohn disease.
Abstract: Signal transduction in response to interleukin-6 (IL-6) requires binding of the cytokine to its receptor (IL-6R) and subsequent homodimerization of the signal transducer gp130. The complex of IL-6 and soluble IL-6R (sIL-6R) triggers dimerization of gp130 and induces responses on cells that do not express membrane bound IL-6R. Naturally occurring soluble gp130 (sgp130) can be found in a ternary complex with IL-6 and sIL-6R. We created recombinant sgp130 proteins that showed binding to IL-6 in complex with sIL-6R and inhibited IL-6/sIL-6R induced proliferation of BAF/3 cells expressing gp130. Surprisingly, sgp130 proteins did not affect IL-6 stimulated proliferation of BAF/3 cells expressing gp130 and membrane bound IL-6R, indicating that sgp130 did not interfere with IL-6 bound to IL-6R on the cell surface. Additionally, sgp130 partially inhibited proliferation induced by leukemia inhibitory factor (LIF) and oncostatin M (OSM) albeit at higher concentrations. Recombinant sgp130 protein could be used to block the anti-apoptotic effect of sIL-6R on lamina propria cells from Crohn disease patients. We conclude that sgp130 is the natural inhibitor of IL-6 responses dependent on sIL-6R. Furthermore, recombinant sgp130 is expected to be a valuable therapeutic tool to specifically block disease states in which sIL-6R transsignaling responses exist, e.g. in morbus Crohn disease.

587 citations

Journal ArticleDOI
TL;DR: DBS of the STN is safe with respect to neuropsychological and psychiatric effects in carefully selected patients during a 6-month follow-up period, although there is a selective decrease in frontal cognitive functions and an improvement in anxiety in patients after the treatment.
Abstract: Summary Background Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces motor symptoms in patients with Parkinson's disease (PD) and improves their quality of life; however, the effect of DBS on cognitive functions and its psychiatric side-effects are still controversial. To assess the neuropsychiatric consequences of DBS in patients with PD we did an ancillary protocol as part of a randomised study that compared DBS with the best medical treatment. Methods 156 patients with advanced Parkinson's disease and motor fluctuations were randomly assigned to have DBS of the STN or the best medical treatment for PD according to the German Society of Neurology guidelines. 123 patients had neuropsychological and psychiatric examinations to assess the changes between baseline and after 6 months. The primary outcome was the comparison of the effect of DBS with the best medical treatment on overall cognitive functioning (Mattis dementia rating scale). Secondary outcomes were the effects on executive function, depression, anxiety, psychiatric status, manic symptoms, and quality of life. Analysis was per protocol. The study is registered at ClinicalTrials.gov, number NCT00196911. Findings 60 patients were randomly assigned to receive STN-DBS and 63 patients to have best medical treatment. After 6 months, impairments were seen in executive function (difference of changes [DBS–best medical treatment] in verbal fluency [semantic] −4·50 points, 95% CI −8·07 to −0·93, Cohen's d =−;0·4; verbal fluency [phonemic] −3·06 points, −5·50 to −0·62, −0·5; Stroop 2 naming colour error rate −0·37 points, −0·73 to 0·00, −0·4; Stroop 3 word reading time −5·17 s, −8·82 to −1·52, −0·5; Stroop 4 colour naming time −13·00 s, −25·12 to −0·89, −0·4), irrespective of the improvement in quality of life (difference of changes in PDQ-39 10·16 points, 5·45 to 14·87, 0·6; SF-36 physical 16·55 points, 10·89 to 22·21, 0·9; SF-36 psychological 9·74 points, 2·18 to 17·29, 0·5). Anxiety was reduced in the DBS group compared with the medication group (difference of changes in Beck anxiety inventory 10·43 points, 6·08 to 14·78, 0·8). Ten patients in the DBS group and eight patients in the best medical treatment group had severe psychiatric adverse events. Interpretation DBS of the STN does not reduce overall cognition or affectivity, although there is a selective decrease in frontal cognitive functions and an improvement in anxiety in patients after the treatment. These changes do not affect improvements in quality of life. DBS of the STN is safe with respect to neuropsychological and psychiatric effects in carefully selected patients during a 6-month follow-up period. Funding German Federal Ministry of Education and Research (01GI0201).

583 citations

Journal ArticleDOI
TL;DR: The present state of knowledge in sialobiology, with an emphasis on my personal experience in this research area, is outlined including a discussion of necessary future work in this fascinating field of cell biology.
Abstract: Sialic acids are one of the most important molecules of life, since they occupy the terminal position on macromolecules and cell membranes and are involved in many biological and pathological phenomena. The structures of sialic acids, comprising a family of over 40 neuraminic acid derivatives, have been elucidated. However, many aspects of the regulation of their metabolism at the enzyme and gene levels, as well as of their functions remain mysterious. Sialic acids play a dual role, not only are they indispensable for the protection to and adaptation of life, but are also utilised by life-threatening infectious microorganisms. In this article the present state of knowledge in sialobiology, with an emphasis on my personal experience in this research area, is outlined including a discussion of necessary future work in this fascinating field of cell biology.

583 citations

Journal ArticleDOI
G. Eiriksdottir1, T. B. Harris1, L. J. Launer, Vilmundur Gudnason1, Aaron R. Folsom1, Gavin Andrews2, C. M. Ballantyne3, Nilesh J. Samani4, A. S. Hall5, P. S. Braund6, A. J. Balmforth1, Peter H. Whincup4, Richard W Morris1, Debbie A Lawlor3, Gordon D.O. Lowe2, Nicholas J. Timpson7, Shah Ebrahim7, Yoav Ben-Shlomo7, George Davey-Smith5, Børge G. Nordestgaard6, Anne Tybjærg-Hansen1, Jeppe Zacho8, Matthew A. Brown9, Manjinder S. Sandhu1, Sally L. Ricketts1, Sofie Ashford1, Leslie A. Lange, Alexander P. Reiner10, Mary Cushman11, Russel Tracy11, C. Wu, J. Ge, Y. Zou, A. Sun, Joseph Hung, Brendan McQuillan, Peter L. Thompson12, John Beilby13, Nicole M. Warrington, Lyle J. Palmer14, Christoph Wanner15, Christiane Drechsler15, Michael Hoffmann16, F. G. R. Fowkes17, Ioanna Tzoulaki, Meena Kumari2, Michelle A. Miller18, Michael Marmot2, Charlotte Onland-Moret, Y. T. van der Schouw19, J.M.A. Boer20, Cisca Wijmenga, Kay-Tee Khaw, Ramachandran S. Vasan21, Renate B. Schnabel22, J. F. Yamamoto, E J Benjamin21, Heribert Schunkert23, Jeanette Erdmann23, Inke R. König23, Christian Hengstenberg24, Benedetta D. Chiodini25, MariaGrazia Franzosi26, Silvia Pietri, Francesca Gori26, Megan E. Rudock27, Yongmei Liu27, Kurt Lohman27, Steve E. Humphries2, Anders Hamsten28, Paul Norman29, Graeme J. Hankey, Konrad Jamrozik, Eric B. Rimm30, J. K. Pai, Bruce M. Psaty31, Susan R. Heckbert31, J. C. Bis10, Salim Yusuf32, Sonia S. Anand3, Engert Jc3, C. Xie, Ryan L. Collins, Robert Clarke33, David L.H. Bennett34, Jaspal S. Kooner35, John C. Chambers35, Paul Elliott35, W. März36, Marcus E. Kleber, Bernhard O. Böhm37, Winkelmann Br38, Olle Melander39, Göran Berglund39, Wolfgang Koenig37, Barbara Thorand40, Jens Baumert41, Annette Peters42, JoAnn E. Manson30, J.A. Cooper2, P.J. Talmud, Per Ladenvall, Lovisa Johansson39, J. H. Jansson43, Göran Hallmans43, Muredach P. Reilly44, Liming Qu44, Man Li45, Daniel J. Rader44, Hugh Watkins33, Jemma C. Hopewell46, Danish Saleheen1, John Danesh1, Philippe M. Frossard47, Naveed Sattar34, Michele Robertson48, J. Shepherd34, Ernst J. Schaefer49, A. Hofman50, J. C. M. Witteman51, Isabella Kardys51, Abbas Dehghan10, U de Faire52, Anna M. Bennet28, Bruna Gigante28, Karin Leander28, Bas J M Peters19, A.H. Maitland-van der Zee19, A.H. De Boer53, Olaf H. Klungel19, Philip Greenland54, J. Dai, Simin Liu55, Eric J. Brunner2, Mika Kivimäki2, Denis St. J. O’Reilly56, Ian Ford48, Chris J. Packard57 
University of Cambridge1, University College London2, McGill University3, University of Leicester4, University of Bristol5, University of Copenhagen6, University of London7, Copenhagen University Hospital8, University of Queensland9, University of Washington10, University of Vermont11, Sir Charles Gairdner Hospital12, University of Western Australia13, Ontario Institute for Cancer Research14, University of Würzburg15, ETH Zurich16, University of Edinburgh17, University of Warwick18, Utrecht University19, National Heart Foundation of Australia20, Boston University21, University of Kiel22, University of Lübeck23, University Hospital Regensburg24, King's College London25, Mario Negri Institute for Pharmacological Research26, Wake Forest University27, Karolinska Institutet28, University of Leeds29, Harvard University30, Group Health Cooperative31, McMaster University32, University of Oxford33, University of Glasgow34, Imperial College London35, Medical University of Graz36, University of Ulm37, Goethe University Frankfurt38, Lund University39, Helmholtz Zentrum München40, Robert Koch Institute41, Ludwig Maximilian University of Munich42, Umeå University43, University of Pennsylvania44, Johns Hopkins University45, Clinical Trial Service Unit46, Aga Khan University Hospital47, Robertson Centre for Biostatistics48, Tufts University49, University of Bonn50, Erasmus University Rotterdam51, Karolinska University Hospital52, University of Groningen53, Northwestern University54, University of California, Los Angeles55, Glasgow Royal Infirmary56, Glasgow Clinical Research Facility57
15 Feb 2011
TL;DR: Human genetic data indicate that C reactive protein concentration itself is unlikely to be even a modest causal factor in coronary heart disease.
Abstract: Objective To use genetic variants as unconfounded proxies of C reactive protein concentration to study its causal role in coronary heart disease. Design Mendelian randomisation meta-analysis of ind ...

583 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide nonspecialists working in the general area of digital communications with a comprehensive overview of this exciting research field, with focus on spatial multiplexing and spatial diversity techniques.
Abstract: The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last decade - both in academia and industry. Multiple antennas can be utilized in order to accomplish a multiplexing gain, a diversity gain, or an antenna gain, thus enhancing the bit rate, the error performance, or the signal-to-noise-plus-interference ratio of wireless systems, respectively. With an enormous amount of yearly publications, the field of multiple-antenna systems, often called multiple-input multiple-output (MIMO) systems, has evolved rapidly. To date, there are numerous papers on the performance limits of MIMO systems, and an abundance of transmitter and receiver concepts has been proposed. The objective of this literature survey is to provide non-specialists working in the general area of digital communications with a comprehensive overview of this exciting research field. To this end, the last ten years of research efforts are recapitulated, with focus on spatial multiplexing and spatial diversity techniques. In particular, topics such as transmitter and receiver structures, channel coding, MIMO techniques for frequency-selective fading channels, diversity reception and space-time coding techniques, differential and non-coherent schemes, beamforming techniques and closed-loop MIMO techniques, cooperative diversity schemes, as well as practical aspects influencing the performance of multiple-antenna systems are addressed. Although the list of references is certainly not intended to be exhaustive, the publications cited will serve as a good starting point for further reading.

582 citations


Authors

Showing all 28103 results

NameH-indexPapersCitations
Stefan Schreiber1781233138528
Jun Wang1661093141621
William J. Sandborn1621317108564
Jens Nielsen1491752104005
Tak W. Mak14880794871
Annette Peters1381114101640
Severine Vermeire134108676352
Peter M. Rothwell13477967382
Dusan Bruncko132104284709
Gideon Bella129130187905
Dirk Schadendorf1271017105777
Neal L. Benowitz12679260658
Thomas Schwarz12370154560
Meletios A. Dimopoulos122137171871
Christian Weber12277653842
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

University of Padua
114.8K papers, 3.6M citations

94% related

Heidelberg University
119.1K papers, 4.6M citations

94% related

University of Bologna
115.1K papers, 3.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023197
2022421
20212,761
20202,644
20192,556
20182,247