scispace - formally typeset
Search or ask a question
Institution

University of Konstanz

EducationKonstanz, Baden-Württemberg, Germany
About: University of Konstanz is a education organization based out in Konstanz, Baden-Württemberg, Germany. It is known for research contribution in the topics: Population & Visualization. The organization has 12115 authors who have published 27401 publications receiving 951162 citations. The organization is also known as: University of Constance & Universität Konstanz.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors examined the psychometric properties of short scales (with three items) and single-item measures for two core motivational-affective constructs (i.e., academic anxiety and academic self-concept) by conducting systematic comparisons with corresponding long scales across school subjects and within different subject domains.

273 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined job stressors, job involvement, and recovery-related selfefficacy as predictors of psychological detachment in a sample of 148 school teachers, assessed by self-reports and by ratings provided by family members.
Abstract: Previous research has suggested that psychological detachment from work during off-job time is important in order to recover from stress encountered at the job. Psychological detachment refers to an individual's experience of being mentally away from work, to make a pause in thinking about work-related issues, thus to “switch off”. This study examines job stressors, job involvement, and recovery-related self-efficacy as predictors of psychological detachment in a sample of 148 school teachers. Psychological detachment was assessed by self-reports and by ratings provided by family members. Multiple regression analysis showed that workload, job involvement, and recovery-related self-efficacy were significant predictors of both self-rated and family-rated psychological detachment. The study findings suggest that with respect to practical implications it is crucial to manage workload and to increase recovery-related self-efficacy.

273 citations

Journal ArticleDOI
TL;DR: It is demonstrated that caspases cleave and inactivate the plasma membrane Ca2+ pump (PMCA) in neurons and non-neuronal cells undergoing apoptosis, and this event can lead to necrosis, an event that is reduced by caspase inhibitors in brain ischemia.
Abstract: Neuronal death, which follows ischemic injury or is triggered by excitotoxins, can occur by both apoptosis and necrosis. Caspases, which are not directly required for necrotic cell death, are central mediators of the apoptotic program. Here we demonstrate that caspases cleave and inactivate the plasma membrane Ca2+ pump (PMCA) in neurons and non-neuronal cells undergoing apoptosis. PMCA cleavage impairs intracellular Ca2+ handling, which results in Ca2+ overload. Expression of non-cleavable PMCA mutants prevents the disturbance in Ca2+ handling, slows down the kinetics of apoptosis, and markedly delays secondary cell lysis (necrosis). These findings suggest that caspase-mediated cleavage and inactivation of PMCAs can lead to necrosis, an event that is reduced by caspase inhibitors in brain ischemia.

272 citations

Journal ArticleDOI
TL;DR: Past investigations on microbial energy requirements and adaptations to energy limitation, identify gaps in current knowledge, and outline possible future foci of research on life under extreme energy limitation are discussed.
Abstract: The ability of microorganisms to withstand long periods with extremely low energy input has gained increasing scientific attention in recent years. Starvation experiments in the laboratory have shown that a phylogenetically wide range of microorganisms evolve fitness-enhancing genetic traits within weeks of incubation under low-energy stress. Studies on natural environments that are cut off from new energy supplies over geologic time scales, such as deeply buried sediments, suggest that similar adaptations might mediate survival under energy limitation in the environment. Yet, the extent to which laboratory-based evidence of starvation survival in pure or mixed cultures can be extrapolated to sustained microbial ecosystems in nature remains unclear. In this review, we discuss past investigations on microbial energy requirements and adaptations to energy limitation, identify gaps in our current knowledge, and outline possible future foci of research on life under extreme energy limitation.

271 citations

Journal ArticleDOI
TL;DR: In this paper, Desulfovibrio desulfuricans CSN and Desulfobulbus propionicus were characterized in detail for the oxidation of inorganic sulfur compounds.
Abstract: All of fourteen sulfate-reducing bacteria tested were able to carry out aerobic respiration with at least one of the following electron donors: H2, lactate, pyruvate, formate, acetate, butyrate, ethanol, sulfide, thiosulfate, sulfite. Generally, we did not obtain growth with O2 as electron acceptor. The bacteria were microaerophilic, since the respiration rates increased with decreasing O2 concentrations or ceased after repeated O2 additions. The amounts of O2 consumed indicated that the organic substrates were oxidized incompletely to acetate; only Desulfobacter postgatei oxidized acetate with O2 completely to CO2. Many of the strains oxidized sulfite (completely to sulfate) or sulfide (incompletely, except Desulfobulbus propionicus); thiosulfate was oxidized only by strains of Desulfovibrio desulfuricans; trithionate and tetrathionate were not oxidized by any of the strains. With Desulfovibrio desulfuricans CSN and Desulfobulbus propionicus the oxidation of inorganic sulfur compounds was characterized in detail. D. desulfuricans formed sulfate during oxidation of sulfite, thiosulfate or elemental sulfur prepared from polysulfide. D. propionicus oxidized sulfite and sulfide to sulfate, and elemental sulfur mainly to thiosulfate. A novel pathway that couples the sulfur and nitrogen cycles was detected: D. desulfuricans and (only with nitrite) D. propionicus were able to completely oxidize sulfide coupled to the reduction of nitrate or nitrite to ammonia. Cell-free extracts of both strains did not oxidize sulfide or thiosulfate, but formed ATP during oxidation of sulfite (37 nmol per 100 nmol sulfite). This, and the effects of AMP, pyrophosphate and molybdate on sulfite oxidation, suggested that sulfate is formed via the (reversed) sulfate activation pathway (involving APS reductase and ATP sulfurylase). Thiosulfate oxidation with O2 probably required a reductive first step, since it was obtained only with energized intact cells.

271 citations


Authors

Showing all 12272 results

NameH-indexPapersCitations
Robert E. W. Hancock15277588481
Lloyd J. Old152775101377
Andrew White1491494113874
Stefanie Dimmeler14757481658
Rudolf Amann14345985525
Niels Birbaumer14283577853
Thomas P. Russell141101280055
Emmanuelle Perez138155099016
Shlomo Havlin131101383347
Bruno S. Frey11990065368
Roald Hoffmann11687059470
Michael G. Fehlings116118957003
Yves Van de Peer11549461479
Axel Meyer11251151195
Manuela Campanelli11167548563
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

University of California, Irvine
113.6K papers, 5.5M citations

91% related

Arizona State University
109.6K papers, 4.4M citations

91% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Max Planck Society
406.2K papers, 19.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202360
2022202
20211,361
20201,299
20191,166
20181,082