scispace - formally typeset
Search or ask a question
Institution

University of Konstanz

EducationKonstanz, Baden-Württemberg, Germany
About: University of Konstanz is a education organization based out in Konstanz, Baden-Württemberg, Germany. It is known for research contribution in the topics: Population & Visualization. The organization has 12115 authors who have published 27401 publications receiving 951162 citations. The organization is also known as: University of Constance & Universität Konstanz.


Papers
More filters
Journal ArticleDOI
TL;DR: The role of simian virus 40 (SV40) large tumor antigen (T antigen) as a DNA helicase at the replication fork was studied and found that a T-antigen hexamer complex acts during the unidirectional unwinding of appropriate DNA substrates and is localized directly in the center of the fork.
Abstract: The role of simian virus 40 (SV40) large tumor antigen (T antigen) as a DNA helicase at the replication fork was studied. We found that a T-antigen hexamer complex acts during the unidirectional unwinding of appropriate DNA substrates and is localized directly in the center of the fork, contacting the adjacent double strand as well as the emerging single strands. When bidirectional DNA unwinding, initiated at the viral origin of DNA replication, was analyzed, a larger T-antigen complex that is simultaneously active at both branch points of an unwinding bubble was observed. The size and shape of this helicase complex imply that the T-antigen dodecamer complex, assembled at the origin and active in the localized melting of duplex DNA, is subsequently also used to continue DNA unwinding bidirectionally. Then, however, the dodecamer complex does not split into two hexamer subunits that track along the DNA; rather, the DNA is threaded through the intact complex, with the concomitant extrusion of single-stranded loops.

219 citations

Journal ArticleDOI
TL;DR: It is suggested that this enzyme is acting very near the replication forks in replicating simian virus 40 minichromosomes, because camptothecin is known to be a specific inhibitor of type I DNA topoisomerase.
Abstract: The structure of replicating simian virus 40 minichromosomes, extracted from camptothecin-treated infected cells, was investigated by biochemical and electron microscopic methods. The authors found that camptothecin frequently induced breaks at replication forks close to the replicative growth points. Replication branches were disrupted at about equal frequencies at the leading and the lagging strand sides of the fork. Since camptothecin is known to be a specific inhibitor of type I DNA topoisomerase, the authors suggest that this enzyme is acting very near the replication forks. This conclusion was supported by experiments with aphidicolin, a drug that blocks replicative fork movement, but did not prevent the camptothecin-induced breakage of replication forks. The drug teniposide, and inhibitor of type II DNA topoisomerase, had only minor effects on the structure of these replicative intermediates.

219 citations

Journal ArticleDOI
TL;DR: The data suggest that chemotherapy can only reduce the amounts of mature CEC, probably reflecting detached cells from tumour vessels, whereas the EPC and their progenitors are mobilised by chemotherapy.
Abstract: Circulating endothelial cells (CECs) as well as bone-marrow-derived endothelial precursor cells (EPC) play an important role in neovascularisation and tumour growth. To study the impact of neoadjuvant chemotherapy on the amounts of CEC and their precursor cells, mature CEC and their progenitors were quantified by flow cytometry in peripheral blood of breast cancer patients during anthracycline and/or taxane based neoadjuvant chemotherapy and subsequent surgery in comparison to age-matched healthy controls. Cell numbers were tested for correlation with serum levels of angiopoietin-2, erythropoietin, endostatin, endoglin, VEGF and sVCAM-1 as well as clinical and pathological features of breast cancer disease. Circulating endothelial cells were significantly elevated in breast cancer patients and decreased during chemotherapy, whereas EPC (CD34+/VEGFR-2+) as well as their progenitor cell population CD133+/CD34+ and the population of CD34+ stem cells increased. Concomitantly with the increase of progenitor cells an increase of VEGF, erythropoietin and angiopoietin-2 was observed. These data suggest that chemotherapy can only reduce the amounts of mature CEC, probably reflecting detached cells from tumour vessels, whereas the EPC and their progenitors are mobilised by chemotherapy. Since this mobilisation of EPC may contribute to tumour neovascularisation an early antiangiogenic therapy in combination with chemotherapy could be beneficial for the success of cancer therapy.

218 citations

Journal ArticleDOI
TL;DR: In this paper, a gas purifier has been used to improve the transport properties of undoped intrinsic hydrogenated microcrystalline silicon (μc-Si:H) tandems.
Abstract: Recently the authors have demonstrated that compensated or “midgap” intrinsic hydrogenated microcrystalline silicon (μc-Si:H), as deposited by the Very High Frequency Glow Discharge (VHF-GD) technique, can be used as active layer in p-i-n solar cells. Compared to amorphous silicon (a-Si:H), μc-Si:H was found to have a significantly lower energy bandgap ofaround 1 eV. The combination of both materials (two absorbers with different gap energies) leads to a “real” tandem cell structure, which was called the “micromorph” cell. Micromorph cells can make better use of the sun's spectrum in contrast to conventional double-stacked a-Si:H / a-Si:H tandems. The present study will show that the compensation technique (involving boron “microdoping”) used sofar for obtaining midgap μc-Si:H can be replaced by the application of a gas purifier. The use of this gas purifier has a beneficial influence on the transport properties of undoped intrinsic μc-Si:H. By this procedure, increased cell efficiencies in both, single microcrystalline silicon p-i-n as well as micromorph cells could be obtained. In the first case 7.7 % stable, and in the second case 13.1% initial efficiency could be achieved under AMI.5 conditions. Preliminary light-soaking experiments performed on the tandem cells indicate that microcrystalline silicon could contribute to an enhancement of the stable efficiency performance. Micromorph cell manufacturing is fully compatible to a-Si:H technology; however, its deposition rate is still too low. With further increase of the rate, a similar cost reduction potential like in a-Si:H technology can be extrapolated.

218 citations

Journal ArticleDOI
TL;DR: Quantification of substrate consumption, sulphide formation and formed cell mass revealed that naphthalene was completely oxidized with sulphate as the electron acceptor.
Abstract: Incubation of marine sediment in anoxic, sulphate-rich medium in the presence of naphthalene resulted in the enrichment of sulphate-reducing bacteria. Pure cultures with short, oval cells (1.3 by 1.3-1.9 microm) were isolated that grew with naphthalene as the only organic carbon source and electron donor for sulphate reduction to sulphide. One strain, NaphS2, was characterized. It affiliated with completely oxidizing sulphate-reducing bacteria of the delta-subclass of the Proteobacteria, as revealed by 16S rRNA sequence analysis. 2-Naphthoate, benzoate, pyruvate and acetate were used in addition to naphthalene. Quantification of substrate consumption, sulphide formation and formed cell mass revealed that naphthalene was completely oxidized with sulphate as the electron acceptor.

218 citations


Authors

Showing all 12272 results

NameH-indexPapersCitations
Robert E. W. Hancock15277588481
Lloyd J. Old152775101377
Andrew White1491494113874
Stefanie Dimmeler14757481658
Rudolf Amann14345985525
Niels Birbaumer14283577853
Thomas P. Russell141101280055
Emmanuelle Perez138155099016
Shlomo Havlin131101383347
Bruno S. Frey11990065368
Roald Hoffmann11687059470
Michael G. Fehlings116118957003
Yves Van de Peer11549461479
Axel Meyer11251151195
Manuela Campanelli11167548563
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

University of California, Irvine
113.6K papers, 5.5M citations

91% related

Arizona State University
109.6K papers, 4.4M citations

91% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Max Planck Society
406.2K papers, 19.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202360
2022202
20211,361
20201,299
20191,166
20181,082