scispace - formally typeset
Search or ask a question
Institution

University of Konstanz

EducationKonstanz, Baden-Württemberg, Germany
About: University of Konstanz is a education organization based out in Konstanz, Baden-Württemberg, Germany. It is known for research contribution in the topics: Population & Membrane. The organization has 12115 authors who have published 27401 publications receiving 951162 citations. The organization is also known as: University of Constance & Universität Konstanz.
Topics: Population, Membrane, Politics, Laser, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: This work proposes a procedure for statistical correction of artifacts in dense array studies (SCADS), which detects individual channel artifacts using the recording reference, detects globalartifacts using the average reference, replaces artifact-contaminated sensors with spherical interpolation statistically weighted on the basis of all sensors, and computes the variance of the signal across trials to document the stability of the averaged waveform.
Abstract: With the advent of dense sensor arrays (64-256 channels) in electroencephalography and magnetoencephalography studies, the probability increases that some recording channels are contaminated by artifact. If all channels are required to be artifact free, the number of acceptable trials may be unacceptably low. Precise artifact screening is necessary for accurate spatial mapping, for current density measures, for source analysis, and for accurate temporal analysis based on single-trial methods. Precise screening presents a number of problems given the large datasets. We propose a procedure for statistical correction of artifacts in dense array studies (SCADS), which (1) detects individual channel artifacts using the recording reference, (2) detects global artifacts using the average reference, (3) replaces artifact-contaminated sensors with spherical interpolation statistically weighted on the basis of all sensors, and (4) computes the variance of the signal across trials to document the stability of the averaged waveform. Examples from 128-channel recordings and from numerical simulations illustrate the importance of careful artifact review in the avoidance of analysis errors.

517 citations

Journal ArticleDOI
12 Mar 2009-Nature
TL;DR: This work uses a quantum-well waveguide structure to optically tune light–matter interaction from weak to ultrastrong and turn on maximum coupling within less than one cycle of light, and directly monitors how a coherent photon population converts to cavity polaritons during abrupt switching.
Abstract: Controlling the way light interacts with material excitations is at the heart of cavity quantum electrodynamics (QED). In the strong-coupling regime, quantum emitters in a microresonator absorb and spontaneously re-emit a photon many times before dissipation becomes effective, giving rise to mixed light-matter eigenmodes. Recent experiments in semiconductor microcavities reached a new limit of ultrastrong coupling, where photon exchange occurs on timescales comparable to the oscillation period of light. In this limit, ultrafast modulation of the coupling strength has been suggested to lead to unconventional QED phenomena. Although sophisticated light-matter coupling has been achieved in all three spatial dimensions, control in the fourth dimension, time, is little developed. Here we use a quantum-well waveguide structure to optically tune light-matter interaction from weak to ultrastrong and turn on maximum coupling within less than one cycle of light. In this regime, a class of extremely non-adiabatic phenomena becomes observable. In particular, we directly monitor how a coherent photon population converts to cavity polaritons during abrupt switching. This system forms a promising laboratory in which to study novel sub-cycle QED effects and represents an efficient room-temperature switching device operating at unprecedented speed.

517 citations

Journal ArticleDOI
TL;DR: An atomic interferometers based on a Young's-type double-slit arrangement has been demonstrated and the good visibility of the observed fringes should make it possible to measure differential phase shifts in the interferometer of 1/3 rad in less than 10 min.
Abstract: An atomic interferometer based on a Young's-type double-slit arrangement has been demonstrated. A supersonic beam of metastable helium atoms passes through a 2-\ensuremath{\mu}m-wide slit in a thin gold foil. This transversely coherent beam impinges on a second microfabricated transmission structure, consisting of two 1-\ensuremath{\mu}m-wide slits at a lateral distance of 8 \ensuremath{\mu}m. This double slit defines two possible paths on which the atoms can reach the detector slit. The good visibility of the observed fringes should make it possible to measure differential phase shifts in the interferometer of 1/3 rad in less than 10 min.

510 citations

Journal ArticleDOI
TL;DR: Emotion potentiated attention effects specifically during later stages of processing, suggesting to specify the interaction of attention and emotion in distinct processing stages.
Abstract: Visual attention can be voluntarily directed toward stimuli and is attracted by stimuli that are emotionally significant. The present study explored the case when both processes coincide and attention is directed to emotional stimuli. Participants viewed a rapid and continuous stream of high-arousing erotica and mutilation stimuli as well as low-arousing control images. Each of the three stimulus categories served in separate runs as target or nontarget category. Event-related brain potential measures revealed that the interaction of attention and emotion varied for specific processing stages. The effects of attention and emotional significance operated additively during perceptual encoding indexed by negative-going potentials over posterior regions (approximately 200-350 ms after stimulus onset). In contrast, thought to reflect the process of stimulus evaluation, P3 target effects (approximately 400-600 ms after stimulus onset) were markedly augmented when erotica and mutilation compared with control stimuli were the focus of attention. Thus, emotion potentiated attention effects specifically during later stages of processing. These findings suggest to specify the interaction of attention and emotion in distinct processing stages.

509 citations

Journal ArticleDOI
TL;DR: It is demonstrated here that rpoS/sigma S expression is not only transcriptionally controlled, but is also extensively regulated at the levels of translation and protein stability, and sigma S is a highly unstable protein in exponentially growing cells, that is stabilized at the onset of starvation.
Abstract: The second vegetative sigma factor sigma S (encoded by the rpoS gene) is the master regulator in a complex regulatory network that governs the expression of many stationary phase-induced and osmotically regulated genes in Escherichia coli. Using a combination of gene-fusion technology and quantitative immunoblot, pulse-labeling, and immunoprecipitation analyses, we demonstrate here that rpoS/sigma S expression is not only transcriptionally controlled, but is also extensively regulated at the levels of translation and protein stability. rpoS transcription is inversely correlated with growth rate and is negatively controlled by cAMP-CRP. In complex medium rpoS transcription is stimulated during entry into stationary phase, whereas in minimal media, it is not significantly induced. rpoS translation is stimulated during transition into stationary phase as well as by an increase in medium osmolarity. A model involving mRNA secondary structure is suggested for this novel type of post-transcriptional growth phase-dependent and osmotic regulation. Furthermore, sigma S is a highly unstable protein in exponentially growing cells (with a half-life of 1.4 min), that is stabilized at the onset of starvation. When cells are grown in minimal glucose medium, translational induction and sigma S stabilization occur in a temporal order with the former being stimulated already in late exponential phase and the latter taking place at the onset of starvation. Although sigma S does not control its own transcription, it is apparently indirectly involved in a negative feedback control that operates on the post-transcriptional level. Our analysis also indicates that at least five different signals [cAMP, a growth rate-related signal (ppGpp?), a cell density signal, an osmotic signal, and a starvation signal] are involved in the control of all these processes that regulate rpoS/sigma S expression.

507 citations


Authors

Showing all 12272 results

NameH-indexPapersCitations
Robert E. W. Hancock15277588481
Lloyd J. Old152775101377
Andrew White1491494113874
Stefanie Dimmeler14757481658
Rudolf Amann14345985525
Niels Birbaumer14283577853
Thomas P. Russell141101280055
Emmanuelle Perez138155099016
Shlomo Havlin131101383347
Bruno S. Frey11990065368
Roald Hoffmann11687059470
Michael G. Fehlings116118957003
Yves Van de Peer11549461479
Axel Meyer11251151195
Manuela Campanelli11167548563
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

University of California, Irvine
113.6K papers, 5.5M citations

91% related

Arizona State University
109.6K papers, 4.4M citations

91% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Max Planck Society
406.2K papers, 19.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202360
2022202
20211,361
20201,299
20191,166
20181,082