scispace - formally typeset
Search or ask a question
Institution

University of Konstanz

EducationKonstanz, Baden-Württemberg, Germany
About: University of Konstanz is a education organization based out in Konstanz, Baden-Württemberg, Germany. It is known for research contribution in the topics: Population & Membrane. The organization has 12115 authors who have published 27401 publications receiving 951162 citations. The organization is also known as: University of Constance & Universität Konstanz.
Topics: Population, Membrane, Politics, Laser, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: Histochemical staining and comparative activity determination of succinate dehydrogenase in single fibres revealed that the mosaic like fibre composition of the fast muscle was transformed into a more uniform population resembling that of a predominantly slow muscle.
Abstract: Intermittant long-term stimulation of fast rabbit muscles up to 28 days with a frequency pattern resembling that of a slow muscle (10 Imp/sec) led to a slowing of the time course of contraction already during the first week. There was an increase of tetanic tension as well. The observed rearrangement of activities of key enzymes of energy supplying metabolism was found to occur sequentially. Decreases of extramitochondrial enzymes of glycogenolysis (phosphorylase), glycolysis (triosephosphate dehydrogenase, lactate dehydrogenase) and energy rich phosphate transfer were found initially together with a decrease of mitochondrial glycerolphosphate dehydrogenase. The isozyme pattern of lactate dehydrogenase was changed. Large initial increases were found in enzymes involved in glucose phosphorylation (hexokinase) and fatty acid activation (palmitoyl-CoA synthetase). Later an increase of key enzymes of the citric acid cycle (citrate synthase) and fatty acid oxidation (3-hydroxyacyl-CoA dehydrogenase) as well as ketone body utilization (3-ketoacid-CoA transferase) could be shown. Histochemical staining and comparative activity determination of succinate dehydrogenase in single fibres revealed that the mosaic like fibre composition of the fast muscle was transformed into a more uniform population resembling that of a predominantly slow muscle.

386 citations

Journal ArticleDOI
TL;DR: A fusion protein between cyclophilin-D and glutathione S-transferase (GST) was shown to bind to purified liver inner mitochondrial membranes (IMMs) in a cyclosporin A (CsA)-sensitive manner and was enhanced by diamide treatment of the IMMs.
Abstract: A fusion protein between cyclophilin-D (CyP-D) and glutathione S-transferase (GST) was shown to bind to purified liver inner mitochondrial membranes (IMMs) in a cyclosporin A (CsA)-sensitive manner. Binding was enhanced by diamide treatment of the IMMs. Immobilized GST-CyP-D avidly bound a single 30 kDa protein present in Triton X-100-solubilized IMMs; immunoblotting showed this to be the adenine nucleotide translocase (ANT). Binding was prevented by pretreatment of the CyP-D with CsA, but not with cyclosporin H. Purified ANT also bound specifically to GST-CyP-D, but porin did not, even in the presence of ANT.

383 citations

Journal ArticleDOI
Bernard Dujon1, Despina Alexandraki2, Bruno André3, W. Ansorge, Victoriano Baladrón4, Juan P. G. Ballesta5, Andrea Banrevi, P. A. Bolle, Monique Bolotin-Fukuhara6, Peter Bossier7, Germán Bou5, J. Boyer1, M. J. Buitrago4, Geneviève Chéret, Laurence Colleaux1, B. Dalgnan-Fornier6, F. del Rey4, Caroline Dion, H. Domdey, A. Düsterhöft, S. Düsterhus8, K. D. Entian8, Holger Erfle, Pedro F. Esteban4, Heidi Feldmann9, L. Fernandes7, G. M. Fobo, C. Fritz, Hiroshi Fukuhara, C. Gabel, L. Gaillon1, J. M. Carcia-Cantalejo5, José J. García-Ramírez4, Manda E. Gent10, Marjan Ghazvini11, Marjan Ghazvini1, André Goffeau12, A. Gonzaléz4, Dietmar Grothues, Paulo Guerreiro7, Johannes H. Hegemann, N. Hewitt, François Hilger, Cornelis P. Hollenberg, O. Horaitis2, O. Horaitis13, Keith J. Indge10, Alain Jacquier1, C. M. James10, J. C. Jauniaux3, J. C. Jauniaux14, A. Jimenez5, H. Keuchel, L. Kirchrath, K. Kleine, Peter Kötter8, Pierre Legrain1, S. Liebl, Edward J. Louis15, A. Maia e Silva7, Christian Marck, A.-L. Monnier1, D. Mostl, Sylke Müller, B. Obermaier, Stephen G. Oliver10, C. Pallier6, Steve Pascolo11, Steve Pascolo1, Friedhelm Pfeiffer, Peter Philippsen, Rudi J. Planta16, Fritz M. Pohl17, Thomas Pohl, Regina Pohlmann, Daniel Portetelle, Bénédicte Purnelle12, V. Puzos6, M. Ramezani Rad, S. W. Rasmussen18, Miguel Remacha5, José L. Revuelta4, Guy-Franck Richard1, Martin Rieger, Claudina Rodrigues-Pousada7, Matthias Rose8, Thomas Rupp, Maria A. Santos4, Christian Schwager, Christoph Wilhelm Sensen, J. Skala19, J. Skala12, Helena Soares7, Frédéric Sor, J. Stegemann, Hervé Tettelin12, Alain R. Thierry1, M. Tzermia2, L. A. Urrestarazu3, L Van Dyck12, J. C. van Vliet-Reedijk16, Michèle Valens6, M. Vandenbo, C. Vilela7, Stephan Vissers3, D. von Wettstein18, H. Voss, Stefan Wiemann, G. Xu, Jürgen Zimmermann, M. Haasemann6, I. Becker, Hans-Werner Mewes 
02 Jun 1994-Nature
TL;DR: The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome XI has been determined, and the 666,448-base-pair sequence has revealed general chromosome patterns.
Abstract: The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome XI has been determined. In addition to a compact arrangement of potential protein coding sequences, the 666,448-base-pair sequence has revealed general chromosome patterns; in particular, alternating regional variations in average base composition correlate with variations in local gene density along the chromosome. Significant discrepancies with the previously published genetic map demonstrate the need for using independent physical mapping criteria.

383 citations

Journal ArticleDOI
TL;DR: Using a global database of the first regional records of alien species covering the years 1500–2005, a surprisingly high proportion of species in recent records that have never been recorded as alien before are detected.
Abstract: Our ability to predict the identity of future invasive alien species is largely based upon knowledge of prior invasion history Emerging alien species—those never encountered as aliens before—therefore pose a significant challenge to biosecurity interventions worldwide Understanding their temporal trends, origins, and the drivers of their spread is pivotal to improving prevention and risk assessment tools Here, we use a database of 45,984 first records of 16,019 established alien species to investigate the temporal dynamics of occurrences of emerging alien species worldwide Even after many centuries of invasions the rate of emergence of new alien species is still high: One-quarter of first records during 2000–2005 were of species that had not been previously recorded anywhere as alien, though with large variation across taxa Model results show that the high proportion of emerging alien species cannot be solely explained by increases in well-known drivers such as the amount of imported commodities from historically important source regions Instead, these dynamics reflect the incorporation of new regions into the pool of potential alien species, likely as a consequence of expanding trade networks and environmental change This process compensates for the depletion of the historically important source species pool through successive invasions We estimate that 1–16% of all species on Earth, depending on the taxonomic group, qualify as potential alien species These results suggest that there remains a high proportion of emerging alien species we have yet to encounter, with future impacts that are difficult to predict

382 citations

Journal ArticleDOI
TL;DR: A three-tissue organ-on-a-chip system, comprised of liver, heart, and lung, is described, and the value of multiple tissue integration for in vitro study of both the efficacy of and side effects associated with candidate drugs is illustrated.
Abstract: Many drugs have progressed through preclinical and clinical trials and have been available – for years in some cases – before being recalled by the FDA for unanticipated toxicity in humans. One reason for such poor translation from drug candidate to successful use is a lack of model systems that accurately recapitulate normal tissue function of human organs and their response to drug compounds. Moreover, tissues in the body do not exist in isolation, but reside in a highly integrated and dynamically interactive environment, in which actions in one tissue can affect other downstream tissues. Few engineered model systems, including the growing variety of organoid and organ-on-a-chip platforms, have so far reflected the interactive nature of the human body. To address this challenge, we have developed an assortment of bioengineered tissue organoids and tissue constructs that are integrated in a closed circulatory perfusion system, facilitating inter-organ responses. We describe a three-tissue organ-on-a-chip system, comprised of liver, heart, and lung, and highlight examples of inter-organ responses to drug administration. We observe drug responses that depend on inter-tissue interaction, illustrating the value of multiple tissue integration for in vitro study of both the efficacy of and side effects associated with candidate drugs.

382 citations


Authors

Showing all 12272 results

NameH-indexPapersCitations
Robert E. W. Hancock15277588481
Lloyd J. Old152775101377
Andrew White1491494113874
Stefanie Dimmeler14757481658
Rudolf Amann14345985525
Niels Birbaumer14283577853
Thomas P. Russell141101280055
Emmanuelle Perez138155099016
Shlomo Havlin131101383347
Bruno S. Frey11990065368
Roald Hoffmann11687059470
Michael G. Fehlings116118957003
Yves Van de Peer11549461479
Axel Meyer11251151195
Manuela Campanelli11167548563
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

University of California, Irvine
113.6K papers, 5.5M citations

91% related

Arizona State University
109.6K papers, 4.4M citations

91% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Max Planck Society
406.2K papers, 19.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202360
2022202
20211,361
20201,299
20191,166
20181,082