scispace - formally typeset
Search or ask a question
Institution

University of Konstanz

EducationKonstanz, Baden-Württemberg, Germany
About: University of Konstanz is a education organization based out in Konstanz, Baden-Württemberg, Germany. It is known for research contribution in the topics: Population & Membrane. The organization has 12115 authors who have published 27401 publications receiving 951162 citations. The organization is also known as: University of Constance & Universität Konstanz.
Topics: Population, Membrane, Politics, Laser, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: Using time-resolved single-shot pump-probe microscopy the mechanism and the time scale of all-optical magnetization reversal by a single circularly polarized 100 fs laser pulse are unveiled and it is demonstrated that for a 5 microm domain the magnetic information can be recorded and readout within 30 ps, which is the fastest "write-read" event demonstrated for magnetic recording so far.
Abstract: Using time-resolved single-shot pump-probe microscopy we unveil the mechanism and the time scale of all-optical magnetization reversal by a single circularly polarized 100 fs laser pulse. We demonstrate that the reversal has a linear character, i.e., does not involve precession but occurs via a strongly nonequilibrium state. Calculations show that the reversal time which can be achieved via this mechanism is within 10 ps for a 30 nm domain. Using two single subpicosecond laser pulses we demonstrate that for a 5 microm domain the magnetic information can be recorded and readout within 30 ps, which is the fastest "write-read" event demonstrated for magnetic recording so far.

367 citations

Journal ArticleDOI
TL;DR: An experimental study of the quality of centrality scores estimated from a limited number of SSSP computations under various selection strategies for the source vertices is presented.
Abstract: Centrality indices are an essential concept in network analysis. For those based on shortest-path distances the computation is at least quadratic in the number of nodes, since it usually involves solving the single-source shortest-paths (SSSP) problem from every node. Therefore, exact computation is infeasible for many large networks of interest today. Centrality scores can be estimated, however, from a limited number of SSSP computations. We present results from an experimental study of the quality of such estimates under various selection strategies for the source vertices.

367 citations

Journal ArticleDOI
TL;DR: Conspiracy theories explain complex world events with reference to secret plots hatched by powerful groups as discussed by the authors. But their belief in such theories is largely determined by a general propensity towards conspiratio...
Abstract: Conspiracy theories explain complex world events with reference to secret plots hatched by powerful groups. Belief in such theories is largely determined by a general propensity towards conspiratio...

367 citations

Journal ArticleDOI
16 Nov 2001-Science
TL;DR: It is postulate that in the early evolutionary phase of oxygenic photosynthesis, nitrogenase served as an electron acceptor for anaerobic heterotrophic metabolism and that PSI was favored by selection because it provided a micro-anaerobic environment for N2 fixation in cyanobacteria.
Abstract: In the modern ocean, a significant amount of nitrogen fixation is attributed to filamentous, nonheterocystous cyanobacteria of the genus Trichodesmium. In these organisms, nitrogen fixation is confined to the photoperiod and occurs simultaneously with oxygenic photosynthesis. Nitrogenase, the enzyme responsible for biological N2 fixation, is irreversibly inhibited by oxygen in vitro. How nitrogenase is protected from damage by photosynthetically produced O2 was once an enigma. Using fast repetition rate fluorometry and fluorescence kinetic microscopy, we show that there is both temporal and spatial segregation of N2 fixation and photosynthesis within the photoperiod. Linear photosynthetic electron transport protects nitrogenase by reducing photosynthetically evolved O2 in photosystem I (PSI). We postulate that in the early evolutionary phase of oxygenic photosynthesis, nitrogenase served as an electron acceptor for anaerobic heterotrophic metabolism and that PSI was favored by selection because it provided a micro-anaerobic environment for N2 fixation in cyanobacteria.

366 citations

Journal ArticleDOI
TL;DR: It is concluded that there is selection to increase synonymous GC-content in many species due to translational selection or biased gene conversion, because optimal codons tend to be AT-rich and the excess of GC→AT SNPs is observed in datasets with no evidence of recombination.
Abstract: The genomic GC-content of bacteria varies dramatically, from less than 20% to more than 70%. This variation is generally ascribed to differences in the pattern of mutation between bacteria. Here we test this hypothesis by examining patterns of synonymous polymorphism using datasets from 149 bacterial species. We find a large excess of synonymous GC→AT mutations over AT→GC mutations segregating in all but the most AT-rich bacteria, across a broad range of phylogenetically diverse species. We show that the excess of GC→AT mutations is inconsistent with mutation bias, since it would imply that most GC-rich bacteria are declining in GC-content; such a pattern would be unsustainable. We also show that the patterns are probably not due to translational selection or biased gene conversion, because optimal codons tend to be AT-rich, and the excess of GC→AT SNPs is observed in datasets with no evidence of recombination. We therefore conclude that there is selection to increase synonymous GC-content in many species. Since synonymous GC-content is highly correlated to genomic GC-content, we further conclude that there is selection on genomic base composition in many bacteria.

366 citations


Authors

Showing all 12272 results

NameH-indexPapersCitations
Robert E. W. Hancock15277588481
Lloyd J. Old152775101377
Andrew White1491494113874
Stefanie Dimmeler14757481658
Rudolf Amann14345985525
Niels Birbaumer14283577853
Thomas P. Russell141101280055
Emmanuelle Perez138155099016
Shlomo Havlin131101383347
Bruno S. Frey11990065368
Roald Hoffmann11687059470
Michael G. Fehlings116118957003
Yves Van de Peer11549461479
Axel Meyer11251151195
Manuela Campanelli11167548563
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

University of California, Irvine
113.6K papers, 5.5M citations

91% related

Arizona State University
109.6K papers, 4.4M citations

91% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Max Planck Society
406.2K papers, 19.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202360
2022202
20211,361
20201,299
20191,166
20181,082