scispace - formally typeset
Search or ask a question
Institution

University of Konstanz

EducationKonstanz, Baden-Württemberg, Germany
About: University of Konstanz is a education organization based out in Konstanz, Baden-Württemberg, Germany. It is known for research contribution in the topics: Population & Membrane. The organization has 12115 authors who have published 27401 publications receiving 951162 citations. The organization is also known as: University of Constance & Universität Konstanz.
Topics: Population, Membrane, Politics, Laser, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the role of hole transporting materials (HTMs) in perovskite solar cells (PSCs) is discussed, as well as their role in photovoltaic parameters.

335 citations

Journal ArticleDOI
TL;DR: A new fast myosin heavy chain isoform was electrophoretically detected in adult rat skeletal muscles and was present at high levels in diaphragm and, therefore, designated as MHCIId.

335 citations

Journal ArticleDOI
TL;DR: An aggregation model is proposed where transitions to the next higher or lower pore state occur by uptake or release of one monomer and it is assumed that alamethicin forms an elongated loop in the bilayer.
Abstract: Pore formation of alamethicin has been studied by the analysis of steadystate fluctuations of single-pore conductances. An aggregation model is proposed where transitions to the next higher or lower pore state occur by uptake or release of one monomer. It is assumed that alamethicin forms an elongated loop in the bilayer. The main voltage-dependent step is the insertion of this monomer into the membrane after complexation with a cation. This mechanism is equivalent to dipole orientation in an electric field. Pore formation is restricted by the energy required to enlarge the channel in the membrane.

334 citations

Journal ArticleDOI
TL;DR: Charge-pulse experiments were performed with lipid bilayer membranes from oxidized cholesterol/n-decane at relatively high voltages at relatively low voltages, where the membranes show an irreversible mechanical rupture if the membrane is charged to voltages on the order of 300 mV, which is correlated with the reversible electrical breakdown of the lipid bilayers membrane.
Abstract: Charge-pulse experiments were performed with lipid bilayer membranes from oxidized cholesterol/n-decane at relatively high voltages (several hundred mV). The membranes show an irreversible mechanical rupture if the membrane is charged to voltages on the order of 300 mV. In the case of the mechanical rupture, the voltage across the membrane needs about 50–200 μsec to decay completely to zero. At much higher voltages, applied to the membrane by charge pulses of about 500 nsec duration, a decrease of the specific resistance of the membranes by nine orders of magnitude is observed (from 108 to 0.1 Ω cm2), which is correlated with the reversible electrical breakdown of the lipid bilayer membrane. Due to the high conductance increase (breakdown) of the bilayer it is not possible to charge the membrane to a larger value than the critical potential differenceV c. For 1m alkali ion chloridesV c was about 1 V. The temperature dependence of the electrical breakdown voltageV c is comparable to that being observed with cell membranes.V c decreases between 2 and 48°C from 1.5 to 0.6 V in the presence of 1m KCl. Breakdown experiments were also performed with lipid bilayer membranes composed of other lipids. The fast decay of the voltage (current) in the 100-nsec range after application of a charge pulse was very similar in these experiments compared with experiments with membranes made from oxidized cholesterol. However, the membranes made from other lipids show a mechanical breakdown after the electrical breakdown, whereas with one single membrane from oxidized cholesterol more than twenty reproducible breakdown experiments could be repeated without a visible disturbance of the membrane stability. The reversible electrical breakdown of the membrane is discussed in terms of both compression of the membrane (electromechanical model) and ion movement through the membrane induced by high electric field strength (Born energy).

334 citations

Journal ArticleDOI
TL;DR: Increasing evidence suggests that apoptosis and necrosis seem to represent only different shapes of cell demise, resulting from a more or less complete execution of the internal death program.

333 citations


Authors

Showing all 12272 results

NameH-indexPapersCitations
Robert E. W. Hancock15277588481
Lloyd J. Old152775101377
Andrew White1491494113874
Stefanie Dimmeler14757481658
Rudolf Amann14345985525
Niels Birbaumer14283577853
Thomas P. Russell141101280055
Emmanuelle Perez138155099016
Shlomo Havlin131101383347
Bruno S. Frey11990065368
Roald Hoffmann11687059470
Michael G. Fehlings116118957003
Yves Van de Peer11549461479
Axel Meyer11251151195
Manuela Campanelli11167548563
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

University of California, Irvine
113.6K papers, 5.5M citations

91% related

Arizona State University
109.6K papers, 4.4M citations

91% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Max Planck Society
406.2K papers, 19.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202360
2022202
20211,361
20201,299
20191,166
20181,082