scispace - formally typeset
Search or ask a question
Institution

University of Lausanne

EducationLausanne, Switzerland
About: University of Lausanne is a education organization based out in Lausanne, Switzerland. It is known for research contribution in the topics: Population & Poison control. The organization has 20508 authors who have published 46458 publications receiving 1996655 citations. The organization is also known as: Université de Lausanne & UNIL.


Papers
More filters
Journal ArticleDOI
TL;DR: Because of the inherent sensitivity of metabolomics, subtle alterations in biological pathways can be detected to provide insight into the mechanisms that underlie various physiological conditions and aberrant processes, including diseases.
Abstract: Metabolomics, which is the profiling of metabolites in biofluids, cells and tissues, is routinely applied as a tool for biomarker discovery. Owing to innovative developments in informatics and analytical technologies, and the integration of orthogonal biological approaches, it is now possible to expand metabolomic analyses to understand the systems-level effects of metabolites. Moreover, because of the inherent sensitivity of metabolomics, subtle alterations in biological pathways can be detected to provide insight into the mechanisms that underlie various physiological conditions and aberrant processes, including diseases.

1,440 citations

Journal ArticleDOI
TL;DR: In this article, the authors present methods that allow researchers to test causal claims in situations where randomization is not possible or when causal interpretation could be confounded; these methods include fixed-effects panel, sample selection, instrumental variable, regression discontinuity, and difference-in-differences models.
Abstract: Social scientists often estimate models from correlational data, where the independent variable has not been exogenously manipulated; they also make implicit or explicit causal claims based on these models. When can these claims be made? We answer this question by first discussing design and estimation conditions under which model estimates can be interpreted, using the randomized experiment as the gold standard. We show how endogeneity – which includes omitted variables, omitted selection, simultaneity, common-method variance, and measurement error – renders estimates causally uninterpretable. Second, we present methods that allow researchers to test causal claims in situations where randomization is not possible or when causal interpretation could be confounded; these methods include fixed-effects panel, sample selection, instrumental variable, regression discontinuity, and difference-in-differences models. Third, we take stock of the methodological rigor with which causal claims are being made in a social sciences discipline by reviewing a representative sample of 110 articles on leadership published in the previous 10 years in top-tier journals. Our key finding is that researchers fail to address at least 66% and up to 90% of design and estimation conditions that make causal claims invalid. We conclude by offering 10 suggestions on how to improve non-experimental research.

1,438 citations

Journal ArticleDOI
TL;DR: In this article, a life-designing model for career intervention endorses five presuppositions about people and their work lives: contextual possibilities, dynamic processes, non-linear progression, multiple perspectives, and personal patterns.

1,428 citations

Journal ArticleDOI
Giovanni Ciriello1, Giovanni Ciriello2, Michael L. Gatza3, Michael L. Gatza4, Andrew H. Beck5, Matthew D. Wilkerson3, Suhn K. Rhie6, Alessandro Pastore1, Hailei Zhang7, Michael D. McLellan8, Christina Yau9, Cyriac Kandoth1, Reanne Bowlby10, Hui Shen11, Sikander Hayat1, Robert J. Fieldhouse1, Susan C. Lester5, Gary M. Tse12, Rachel E. Factor13, Laura C. Collins5, Kimberly H. Allison14, Yunn Yi Chen15, Kristin C. Jensen16, Kristin C. Jensen14, Nicole B. Johnson5, Steffi Oesterreich17, Gordon B. Mills18, Andrew D. Cherniack7, Gordon Robertson10, Christopher C. Benz9, Chris Sander1, Peter W. Laird11, Katherine A. Hoadley3, Tari A. King1, Rehan Akbani, J. Todd Auman3, Miruna Balasundaram, Saianand Balu, Thomas Barr, Stephen C. Benz, Mario Berrios, Rameen Beroukhim, Tom Bodenheimer, Lori Boice, Moiz S. Bootwalla, Jay Bowen, Denise Brooks, Lynda Chin, Juok Cho, Sudha Chudamani, Tanja M. Davidsen, John A. Demchok, Jennifer B. Dennison, Li Ding, Ina Felau, Martin L. Ferguson, Scott Frazer, Stacey Gabriel, Jianjiong Gao, Julie M. Gastier-Foster, Nils Gehlenborg, Mark Gerken, Gad Getz, William J. Gibson, D. Neil Hayes, David I. Heiman, Andrea Holbrook, Robert A. Holt, Alan P. Hoyle, Hai Hu, Mei Huang, Carolyn M. Hutter, E. Shelley Hwang, Stuart R. Jefferys, Steven J.M. Jones, Zhenlin Ju, Jaegil Kim, Phillip H. Lai, Michael S. Lawrence, Kristen M. Leraas, Tara M. Lichtenberg, Pei Lin, Shiyun Ling, Jia Liu, Wen-Bin Liu, Laxmi Lolla, Yiling Lu, Yussanne Ma, Dennis T. Maglinte, Elaine R. Mardis, Jeffrey R. Marks, Marco A. Marra, Cynthia McAllister, Shaowu Meng, Matthew Meyerson, Richard A. Moore, Lisle E. Mose, Andrew J. Mungall, Bradley A. Murray, Rashi Naresh, Michael S. Noble, Olufunmilayo I. Olopade, Joel S. Parker, Todd Pihl, Gordon Saksena, Steven E. Schumacher, Kenna R. Mills Shaw, Nilsa C. Ramirez, W. Kimryn Rathmell, Jeffrey Roach, A. Gordon Robertson19, Jacqueline E. Schein, Nikolaus Schultz, Margi Sheth, Yan Shi, Juliann Shih, Carl Simon Shelley, Craig D. Shriver, Janae V. Simons, Heidi J. Sofia, Matthew G. Soloway, Carrie Sougnez, Charlie Sun, Roy Tarnuzzer, Daniel Guimarães Tiezzi, David Van Den Berg, Doug Voet, Yunhu Wan, Zhining Wang, John N. Weinstein, Daniel J. Weisenberger, Rick K. Wilson, Lisa Wise, Maciej Wiznerowicz, Junyuan Wu, Ye Wu, Liming Yang, Travis I. Zack, Jean C. Zenklusen, Jiashan Zhang, Erik Zmuda, Charles M. Perou3 
08 Oct 2015-Cell
TL;DR: This multidimensional molecular atlas sheds new light on the genetic bases of ILC and provides potential clinical options, suggesting differential modulation of ER activity in I LC and IDC.

1,414 citations

Journal ArticleDOI
01 Jul 2002-Ecology
TL;DR: In this paper, a multivariate approach to the study of geographic species dis- tribution which does not require absence data is proposed, based on Hutchinson's concept of the ecological niche, which compares the distribution of localities where the focal species was observed to a reference set describing the whole study area.
Abstract: We propose a multivariate approach to the study of geographic species dis- tribution which does not require absence data. Building on Hutchinson's concept of the ecological niche, this factor analysis compares, in the multidimensional space of ecological variables, the distribution of the localities where the focal species was observed to a reference set describing the whole study area. The first factor extracted maximizes the marginality of the focal species, defined as the ecological distance between the species optimum and the mean habitat within the reference area. The other factors maximize the specialization of this focal species, defined as the ratio of the ecological variance in mean habitat to that observed for the focal species. Eigenvectors and eigenvalues are readily interpreted and can be used to build habitat-suitability maps. This approach is recommended in situations where absence data are not available (many data banks), unreliable (most cryptic or rare species), or meaningless (invaders). We provide an illustration and validation of the method for the alpine ibex, a species reintroduced in Switzerland which presumably has not yet recolonized its entire range.

1,413 citations


Authors

Showing all 20911 results

NameH-indexPapersCitations
Peer Bork206697245427
Aaron R. Folsom1811118134044
Kari Alitalo174817114231
Ralph A. DeFronzo160759132993
Johan Auwerx15865395779
Silvia Franceschi1551340112504
Matthias Egger152901184176
Bart Staels15282486638
Fernando Rivadeneira14662886582
Christopher George Tully1421843111669
Richard S. J. Frackowiak142309100726
Peter Timothy Cox140126795584
Jürg Tschopp14032886900
Stylianos E. Antonarakis13874693605
Michael Weller134110591874
Network Information
Related Institutions (5)
Utrecht University
139.3K papers, 6.2M citations

93% related

Yale University
220.6K papers, 12.8M citations

93% related

University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

92% related

University of British Columbia
209.6K papers, 9.2M citations

92% related

Boston University
119.6K papers, 6.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023249
2022635
20213,969
20203,508
20193,091
20182,776