scispace - formally typeset
Search or ask a question
Institution

University of Leicester

EducationLeicester, United Kingdom
About: University of Leicester is a education organization based out in Leicester, United Kingdom. It is known for research contribution in the topics: Population & Galaxy. The organization has 26469 authors who have published 61444 publications receiving 2305724 citations. The organization is also known as: Leicester University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a large-scale computer-assisted telephone survey was conducted to explore the prevalence, severity, treatment and impact of chronic pain in 15 European countries and Israel and found that chronic pain is a major health care problem in Europe that needs to be taken more seriously.

4,549 citations

Journal ArticleDOI
22 Jul 2011-BMJ
TL;DR: How to interpret funnel plot asymmetry, recommends appropriate tests, and explains the implications for choice of meta-analysis model are described.
Abstract: Funnel plots, and tests for funnel plot asymmetry, have been widely used to examine bias in the results of meta-analyses. Funnel plot asymmetry should not be equated with publication bias, because it has a number of other possible causes. This article describes how to interpret funnel plot asymmetry, recommends appropriate tests, and explains the implications for choice of meta-analysis model

4,518 citations

Journal ArticleDOI
Theo Vos1, Ryan M Barber1, Brad Bell1, Amelia Bertozzi-Villa1  +686 moreInstitutions (287)
TL;DR: In the Global Burden of Disease Study 2013 (GBD 2013) as mentioned in this paper, the authors estimated the quantities for acute and chronic diseases and injuries for 188 countries between 1990 and 2013.

4,510 citations

Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Journal ArticleDOI
20 Aug 2004
TL;DR: The Swift mission as discussed by the authors is a multi-wavelength observatory for gamma-ray burst (GRB) astronomy, which is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions.
Abstract: The Swift mission, scheduled for launch in 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts yr � 1 and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to (1) determine the origin of GRBs, (2) classify GRBs and search for new types, (3) study the interaction of the ultrarelativistic outflows of GRBs with their surrounding medium, and (4) use GRBs to study the early universe out to z >10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a newgeneration wide-field gamma-ray (15‐150 keV) detector that will detect bursts, calculate 1 0 ‐4 0 positions, and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 00 positions and perform spectroscopy in the 0.2‐10 keV band; and a narrow-field UV/optical telescope that will operate in the 170‐ 600 nm band and provide 0B3 positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of � 1m crab (� 2;10 � 11 ergs cm � 2 s � 1 in the 15‐150 keV band), more than an order of magnitude better than HEAO 1 A-4. A flexible data and operations system will allow rapid follow-up observations of all types of

3,753 citations


Authors

Showing all 26711 results

NameH-indexPapersCitations
George Davey Smith2242540248373
Vilmundur Gudnason159837123802
Reinhard Genzel15976884530
Daniel J. Rader1551026107408
Nilesh J. Samani149779113545
Richard O. Hynes14344297442
Robert G. Parton13645959737
Yu Huang136149289209
John F. Thompson132142095894
Steven M. Haffner13044173085
Victor J. Dzau13068866047
Martin A. Green127106976807
Wolf Reik12632962174
Nancy R. Cook12448767049
John Robertson12389081089
Network Information
Related Institutions (5)
University of Manchester
168K papers, 6.4M citations

95% related

University College London
210.6K papers, 9.8M citations

94% related

University of Oxford
258.1K papers, 12.9M citations

93% related

University of Cambridge
282.2K papers, 14.4M citations

93% related

University of Edinburgh
151.6K papers, 6.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202390
2022450
20213,206
20203,086
20192,691
20182,483