Institution
University of Lincoln
Education•Lincoln, Lincolnshire, United Kingdom•
About: University of Lincoln is a(n) education organization based out in Lincoln, Lincolnshire, United Kingdom. It is known for research contribution in the topic(s): Population & Higher education. The organization has 2341 authors who have published 7025 publication(s) receiving 124797 citation(s).
Topics: Population, Higher education, Mental health, Health care, Robot
Papers published on a yearly basis
Papers
More filters
[...]
Mohammad H. Forouzanfar1, Lily Alexander, H. Ross Anderson, Victoria F Bachman1 +733 more•Institutions (289)
TL;DR: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) as discussed by the authors provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution.
Abstract: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) is the first of a series of annual updates of the GBD. Risk factor quantification, particularly of modifiable risk factors, can help to identify emerging threats to population health and opportunities for prevention. The GBD 2013 provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution. Attributable deaths, years of life lost, years lived with disability, and disability-adjusted life-years (DALYs) have been estimated for 79 risks or clusters of risks using the GBD 2010 methods. Risk-outcome pairs meeting explicit evidence criteria were assessed for 188 countries for the period 1990-2013 by age and sex using three inputs: risk exposure, relative risks, and the theoretical minimum risk exposure level (TMREL). Risks are organised into a hierarchy with blocks of behavioural, environmental and occupational, and metabolic risks at the first level of the hierarchy. The next level in the hierarchy includes nine clusters of related risks and two individual risks, with more detail provided at levels 3 and 4 of the hierarchy. Compared with GBD 2010, six new risk factors have been added: handwashing practices, occupational exposure to trichloroethylene, childhood wasting, childhood stunting, unsafe sex, and low glomerular filtration rate. For most risks, data for exposure were synthesised with a Bayesian meta-regression method, DisMod-MR 2.0, or spatial-temporal Gaussian process regression. Relative risks were based on meta-regressions of published cohort and intervention studies. Attributable burden for clusters of risks and all risks combined took into account evidence on the mediation of some risks such as high body-mass index (BMI) through other risks such as high systolic blood pressure and high cholesterol. All risks combined account for 57·2% (95% uncertainty interval [UI] 55·8-58·5) of deaths and 41·6% (40·1-43·0) of DALYs. Risks quantified account for 87·9% (86·5-89·3) of cardiovascular disease DALYs, ranging to a low of 0% for neonatal disorders and neglected tropical diseases and malaria. In terms of global DALYs in 2013, six risks or clusters of risks each caused more than 5% of DALYs: dietary risks accounting for 11·3 million deaths and 241·4 million DALYs, high systolic blood pressure for 10·4 million deaths and 208·1 million DALYs, child and maternal malnutrition for 1·7 million deaths and 176·9 million DALYs, tobacco smoke for 6·1 million deaths and 143·5 million DALYs, air pollution for 5·5 million deaths and 141·5 million DALYs, and high BMI for 4·4 million deaths and 134·0 million DALYs. Risk factor patterns vary across regions and countries and with time. In sub-Saharan Africa, the leading risk factors are child and maternal malnutrition, unsafe sex, and unsafe water, sanitation, and handwashing. In women, in nearly all countries in the Americas, north Africa, and the Middle East, and in many other high-income countries, high BMI is the leading risk factor, with high systolic blood pressure as the leading risk in most of Central and Eastern Europe and south and east Asia. For men, high systolic blood pressure or tobacco use are the leading risks in nearly all high-income countries, in north Africa and the Middle East, Europe, and Asia. For men and women, unsafe sex is the leading risk in a corridor from Kenya to South Africa. Behavioural, environmental and occupational, and metabolic risks can explain half of global mortality and more than one-third of global DALYs providing many opportunities for prevention. Of the larger risks, the attributable burden of high BMI has increased in the past 23 years. In view of the prominence of behavioural risk factors, behavioural and social science research on interventions for these risks should be strengthened. Many prevention and primary care policy options are available now to act on key risks. Bill & Melinda Gates Foundation.
4,851 citations
[...]
University of Udine1, École Polytechnique Fédérale de Lausanne2, University of Lugano3, Leipzig University4, University of Paris5, University of North Texas6, Princeton University7, National Research Council8, International School for Advanced Studies9, Cornell University10, University of Lincoln11, University of Milan12, École Polytechnique13, International Centre for Theoretical Physics14, University of Paderborn15, University of Oxford16, Jožef Stefan Institute17, University of Padua18, Sapienza University of Rome19, Vietnam Academy of Science and Technology20, University of British Columbia21, University of Lorraine22, Centre national de la recherche scientifique23, École Normale Supérieure24, University of Zurich25, Université Paris-Saclay26, Wake Forest University27, Temple University28
TL;DR: Recent extensions and improvements are described, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software
2,724 citations
[...]
University of Udine1, University of Lugano2, École Polytechnique Fédérale de Lausanne3, Leipzig University4, University of Paris5, University of North Texas6, Princeton University7, National Research Council8, International School for Advanced Studies9, Cornell University10, University of Lincoln11, University of Milan12, École Polytechnique13, International Centre for Theoretical Physics14, University of Paderborn15, University of Oxford16, Jožef Stefan Institute17, University of Padua18, Sapienza University of Rome19, Vietnam Academy of Science and Technology20, University of British Columbia21, Centre national de la recherche scientifique22, University of Lorraine23, École Normale Supérieure24, University of Zurich25, Université Paris-Saclay26, Wake Forest University27, Temple University28
TL;DR: Quantum ESPRESSO as discussed by the authors is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density functional theory, density functional perturbation theory, and many-body perturbations theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
1,406 citations
[...]
Verneri Anttila1, Verneri Anttila2, Brendan Bulik-Sullivan2, Brendan Bulik-Sullivan1 +717 more•Institutions (270)
TL;DR: It is demonstrated that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine, and it is shown that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures.
Abstract: Disorders of the brain can exhibit considerable epidemiological comorbidity and often share symptoms, provoking debate about their etiologic overlap. We quantified the genetic sharing of 25 brain disorders from genome-wide association studies of 265,218 patients and 784,643 control participants and assessed their relationship to 17 phenotypes from 1,191,588 individuals. Psychiatric disorders share common variant risk, whereas neurological disorders appear more distinct from one another and from the psychiatric disorders. We also identified significant sharing between disorders and a number of brain phenotypes, including cognitive measures. Further, we conducted simulations to explore how statistical power, diagnostic misclassification, and phenotypic heterogeneity affect genetic correlations. These results highlight the importance of common genetic variation as a risk factor for brain disorders and the value of heritability-based methods in understanding their etiology.
1,070 citations
[...]
TL;DR: This study assesses the state-of-the-art machine learning methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018, and investigates the challenge of identifying the best ML algorithms for each of these tasks.
Abstract: Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumoris a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses thestate-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross tota lresection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.
772 citations
Authors
Showing all 2341 results
Name | H-index | Papers | Citations |
---|---|---|---|
David R. Williams | 178 | 2034 | 138789 |
David Scott | 124 | 1561 | 82554 |
Hugh S. Markus | 118 | 606 | 55614 |
Timothy E. Hewett | 116 | 531 | 49310 |
Wei Zhang | 96 | 1404 | 43392 |
Matthew Hall | 75 | 827 | 24352 |
Matthew C. Walker | 73 | 443 | 16373 |
James F. Meschia | 71 | 401 | 28037 |
Mark G. Macklin | 69 | 268 | 13066 |
John N. Lester | 66 | 349 | 19014 |
Christine J Nicol | 61 | 268 | 10689 |
Lei Shu | 59 | 598 | 13601 |
Frank Tanser | 54 | 231 | 17555 |
Simon Parsons | 54 | 462 | 15069 |
Christopher D. Anderson | 54 | 393 | 10523 |