scispace - formally typeset
Search or ask a question
Institution

University of Lincoln

EducationLincoln, Lincolnshire, United Kingdom
About: University of Lincoln is a education organization based out in Lincoln, Lincolnshire, United Kingdom. It is known for research contribution in the topics: Population & Context (language use). The organization has 2341 authors who have published 7025 publications receiving 124797 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Administration of BMP9 reversed established PAH in mice bearing a heterozygous knock-in allele of a human BMPR2 mutation, R899X, and demonstrated the promise of direct enhancement of endothelial BMP signaling as a new therapeutic strategy for PAH.
Abstract: Genetic evidence implicates the loss of bone morphogenetic protein type II receptor (BMPR-II) signaling in the endothelium as an initiating factor in pulmonary arterial hypertension (PAH). However, selective targeting of this signaling pathway using BMP ligands has not yet been explored as a therapeutic strategy. Here, we identify BMP9 as the preferred ligand for preventing apoptosis and enhancing monolayer integrity in both pulmonary arterial endothelial cells and blood outgrowth endothelial cells from subjects with PAH who bear mutations in the gene encoding BMPR-II, BMPR2. Mice bearing a heterozygous knock-in allele of a human BMPR2 mutation, R899X, which we generated as an animal model of PAH caused by BMPR-II deficiency, spontaneously developed PAH. Administration of BMP9 reversed established PAH in these mice, as well as in two other experimental PAH models, in which PAH develops in response to either monocrotaline or VEGF receptor inhibition combined with chronic hypoxia. These results demonstrate the promise of direct enhancement of endothelial BMP signaling as a new therapeutic strategy for PAH.

382 citations

Journal ArticleDOI
TL;DR: In this paper, a survey of farms in north-eastern England was conducted to explore farmers' attitudes to a variety of issues related to diversification into tourism, including the socio-cultural context within which it occurs.

375 citations

Journal ArticleDOI
TL;DR: A role for H3K36 trimethylation in homologous recombination (HR) repair in human cells is defined and it is proposed that error-free HR repair within H3k36me3-decorated transcriptionally active genomic regions promotes cell homeostasis.

369 citations

Journal ArticleDOI
TL;DR: The authors' findings indicate that the automobile industry perceived that the best strategies to mitigate risks related to COVID-19, were to develop localized supply sources and use advanced industry 4.0 (I4.0) technologies, and Big Data Analytics (BDA) to play a significant role by providing real-time information on various supply chain activities to overcome the challenges posed by CO VID-19.

358 citations

Journal ArticleDOI
03 Aug 2016-PLOS ONE
TL;DR: In this paper, a substrate recruitment experiment was established in which PET bottles were deployed for 5-6 weeks at three stations in the North Sea in three different seasons and the structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station.
Abstract: Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5–6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae—all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the PET substrate. Future research is required to investigate microscale functional interactions at the plastic surface.

357 citations


Authors

Showing all 2452 results

NameH-indexPapersCitations
David R. Williams1782034138789
David Scott124156182554
Hugh S. Markus11860655614
Timothy E. Hewett11653149310
Wei Zhang96140443392
Matthew Hall7582724352
Matthew C. Walker7344316373
James F. Meschia7140128037
Mark G. Macklin6926813066
John N. Lester6634919014
Christine J Nicol6126810689
Lei Shu5959813601
Frank Tanser5423117555
Simon Parsons5446215069
Christopher D. Anderson5439310523
Network Information
Related Institutions (5)
University of Exeter
50.6K papers, 1.7M citations

92% related

University of York
56.9K papers, 2.4M citations

91% related

University of Bristol
113.1K papers, 4.9M citations

90% related

University of Sheffield
102.9K papers, 3.9M citations

90% related

University of Nottingham
119.6K papers, 4.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202350
2022193
2021915
2020811
2019735
2018694