scispace - formally typeset
Search or ask a question
Institution

University of Lisbon

EducationLisbon, Lisboa, Portugal
About: University of Lisbon is a education organization based out in Lisbon, Lisboa, Portugal. It is known for research contribution in the topics: Population & European union. The organization has 19122 authors who have published 48503 publications receiving 1102623 citations. The organization is also known as: Universidade de Lisboa & Lisbon University.


Papers
More filters
Journal ArticleDOI
Georges Aad1, Alexander Kupco2, Paolo Laurelli, Stephen Sekula3  +2959 moreInstitutions (200)
TL;DR: In this paper, the production of W bosons in association with two jets in proton-proton collisions at a center-of-mass energy of root s = 7 TeV has been analyzed for the presence of double-parton interactions using data corresponding to an integrated luminosity of 36 pb(-1), collected with the ATLAS detector at the Large Hadron Collider.
Abstract: The production of W bosons in association with two jets in proton-proton collisions at a centre-of-mass energy of root s = 7 TeV has been analysed for the presence of double-parton interactions using data corresponding to an integrated luminosity of 36 pb(-1), collected with the ATLAS detector at the Large Hadron Collider. The fraction of events arising from double-parton interactions, f(DP)((D)), has been measured through the p(T) balance between the two jets and amounts to f(DP)((D)) = 0.08 +/- 0.01 (stat.) +/- 0.02 (sys.) for jets with transverse momentum p(T) > 20 GeV and rapidity vertical bar y vertical bar < 2.8. This corresponds to a measurement of the effective area parameter for hard double-parton interactions of sigma(eff) = 15 +/- 3 (stat.)(-3)(+5) (sys.) mb.

175 citations

Journal ArticleDOI
TL;DR: In this paper, exact solutions of spherically symmetric traversable wormholes supported by the generalized Chaplygin gas (GCG) are found, possibly arising from a density fluctuation in the GCG cosmological background.
Abstract: The generalized Chaplygin gas (GCG) is a candidate for the unification of dark energy and dark matter, and is parametrized by an exotic equation of state given by ${p}_{\mathrm{ch}}=\ensuremath{-}A/{\ensuremath{\rho}}_{\mathrm{ch}}^{\ensuremath{\alpha}}$, where $A$ is a positive constant and $0l\ensuremath{\alpha}\ensuremath{\le}1$. In this paper, exact solutions of spherically symmetric traversable wormholes supported by the GCG are found, possibly arising from a density fluctuation in the GCG cosmological background. To be a solution of a wormhole, the GCG equation of state imposes the following generic restriction $Al(8\ensuremath{\pi}{r}_{0}^{2}{)}^{\ensuremath{-}(1+\ensuremath{\alpha})}$, where ${r}_{0}$ is the wormhole throat radius, consequently violating the null energy condition. The spatial distribution of the exotic GCG is restricted to the throat neighborhood, and the physical properties and characteristics of these Chaplygin wormholes are further analyzed. Four specific solutions are explored in some detail, namely, that of a constant redshift function, a specific choice for the form function, a constant energy density, and finally, isotropic pressure Chaplygin wormhole geometries.

175 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the R package crqa to perform cross-recurrence quantification analysis of two time series of either a categorical or continuous nature, and compare computational efficiency, and results' consistency, of crqa R package, with the benchmark MATLAB toolbox crptoolbox.
Abstract: This paper describes the R package crqa to perform cross-recurrence quantification analysis of two time series of either a categorical or continuous nature. Streams of behavioral information, from eye movements to linguistic elements, unfold over time. When two people interact, such as in conversation, they often adapt to each other, leading these behavioral levels to exhibit recurrent states. In dialogue, for example, interlocutors adapt to each other by exchanging interactive cues: smiles, nods, gestures, choice of words, and so on. In order for us to capture closely the goings-on of dynamic interaction, and uncover the extent of coupling between two individuals, we need to quantify how much recurrence is taking place at these levels. Methods available in crqa would allow researchers in cognitive science to pose such questions as how much are two people recurrent at some level of analysis, what is the characteristic lag time for one person to maximally match another, or whether one person is leading another. First, we set the theoretical ground to understand the difference between ‘correlation’ and ‘co-visitation’ when comparing two time series, using an aggregative or cross-recurrence approach. Then, we describe more formally the principles of cross-recurrence, and show with the current package how to carry out analyses applying them. We end the paper by comparing computational efficiency, and results’ consistency, of crqa R package, with the benchmark MATLAB toolbox crptoolbox (Marwan, 2013). We show perfect comparability between the two libraries on both levels.

175 citations

Journal ArticleDOI
TL;DR: In this article, the authors present six hindcast WRF (Weather Research and Forecasting model) simulations for the EURO-CORDEX (European Coordinated Regional Climate Downscaling Experiment) domain with different configurations in microphysics, convection and radiation for the time period 1990-2008.
Abstract: . In the current work we present six hindcast WRF (Weather Research and Forecasting model) simulations for the EURO-CORDEX (European Coordinated Regional Climate Downscaling Experiment) domain with different configurations in microphysics, convection and radiation for the time period 1990–2008. All regional model simulations are forced by the ERA-Interim reanalysis and have the same spatial resolution (0.44°). These simulations are evaluated for surface temperature, precipitation, short- and longwave downward radiation at the surface and total cloud cover. The analysis of the WRF ensemble indicates systematic temperature and precipitation biases, which are linked to different physical mechanisms in the summer and winter seasons. Overestimation of total cloud cover and underestimation of downward shortwave radiation at the surface, mostly linked to the Grell–Devenyi convection and CAM (Community Atmosphere Model) radiation schemes, intensifies the negative bias in summer temperatures over northern Europe (max −2.5 °C). Conversely, a strong positive bias in downward shortwave radiation in summer over central (40–60%) and southern Europe mitigates the systematic cold bias over these regions, signifying a typical case of error compensation. Maximum winter cold biases are over northeastern Europe (−2.8 °C); this location suggests that land–atmosphere rather than cloud–radiation interactions are to blame. Precipitation is overestimated in summer by all model configurations, especially the higher quantiles which are associated with summertime deep cumulus convection. The largest precipitation biases are produced by the Kain–Fritsch convection scheme over the Mediterranean. Precipitation biases in winter are lower than those for summer in all model configurations (15–30%). The results of this study indicate the importance of evaluating not only the basic climatic parameters of interest for climate change applications (temperature and precipitation), but also other components of the energy and water cycle, in order to identify the sources of systematic biases, possible compensatory or masking mechanisms and suggest pathways for model improvement.

175 citations

Journal ArticleDOI
TL;DR: A kinetic model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain and hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment.
Abstract: Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. To address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven days later with one of two S. pneumoniae strains, type 2 D39 or type 3 A66.1. We determined that, following bacterial infection, viral titers initially rebound and then decline slowly. Bacterial titers rapidly rise to high levels and remain elevated. We used a kinetic model to explore the coupled interactions and study the dominant controlling mechanisms. We hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment. Dynamics are affected by initial bacterial dose but not by the expression of the influenza 1918 PB1-F2 protein. Our model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain.

175 citations


Authors

Showing all 19716 results

NameH-indexPapersCitations
Joao Seixas1531538115070
A. Gomes1501862113951
Marco Costa1461458105096
António Amorim136147796519
Osamu Jinnouchi13588586104
P. Verdier133111183862
Andy Haas132109687742
Wendy Taylor131125289457
Steve McMahon13087878763
Timothy Andeen129106977593
Heather Gray12996680970
Filipe Veloso12888775496
Nuno Filipe Castro12896076945
Oliver Stelzer-Chilton128114179154
Isabel Marian Trigger12897477594
Network Information
Related Institutions (5)
VU University Amsterdam
75.6K papers, 3.4M citations

91% related

University of Padua
114.8K papers, 3.6M citations

91% related

University of Bologna
115.1K papers, 3.4M citations

91% related

University of Groningen
69.1K papers, 2.9M citations

91% related

Utrecht University
139.3K papers, 6.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023247
2022827
20214,520
20204,517
20193,810
20183,617