scispace - formally typeset
Search or ask a question
Institution

University of Lisbon

EducationLisbon, Lisboa, Portugal
About: University of Lisbon is a education organization based out in Lisbon, Lisboa, Portugal. It is known for research contribution in the topics: Population & European union. The organization has 19122 authors who have published 48503 publications receiving 1102623 citations. The organization is also known as: Universidade de Lisboa & Lisbon University.


Papers
More filters
Journal ArticleDOI
TL;DR: An innovative and comprehensive theoretical model that combines the extended unified theory of acceptance and use of technology (UTAUT2) of Venkatesh, Thong, and Xu, with cultural moderators from Hofstede is proposed, providing new insights into factors affecting the acceptation and how culture influences individual use behaviour.

593 citations

Journal ArticleDOI
TL;DR: In this paper, an extensive database of short to medium-term erosion rates as measured on erosion plots in Europe under natural rainfall was compiled from the literature, and statistical analysis confirmed the dominant influence of land use and cover on soil erosion rates.

589 citations

Journal ArticleDOI
Pietro Cortese, G. Dellacasa, Luciano Ramello, M. Sitta  +975 moreInstitutions (78)
TL;DR: The ALICE Collaboration as mentioned in this paper is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC.
Abstract: ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark–gluon plasma in nucleus–nucleus collisions at the LHC. It currently involves more than 900 physicists and senior engineers, from both the nuclear and high-energy physics sectors, from over 90 institutions in about 30 countries.The ALICE detector is designed to cope with the highest particle multiplicities above those anticipated for Pb–Pb collisions (dNch/dy up to 8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, and protons (both pp and pA), which primarily provide reference data for the nucleus–nucleus collisions. In addition, the pp data will allow for a number of genuine pp physics studies.The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2004. The experiment is currently under construction and will be ready for data taking with both proton and heavy-ion beams at the start-up of the LHC.Since the comprehensive information on detector and physics performance was last published in the ALICE Technical Proposal in 1996, the detector, as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) provides an updated and comprehensive summary of the performance of the various ALICE subsystems, including updates to the Technical Design Reports, as appropriate.The PPR is divided into two volumes. Volume I, published in 2004 (CERN/LHCC 2003-049, ALICE Collaboration 2004 J. Phys. G: Nucl. Part. Phys. 30 1517–1763), contains in four chapters a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE, the experimental conditions at the LHC, a short summary and update of the subsystem designs, and a description of the offline framework and Monte Carlo event generators.The present volume, Volume II, contains the majority of the information relevant to the physics performance in proton–proton, proton–nucleus, and nucleus–nucleus collisions. Following an introductory overview, Chapter 5 describes the combined detector performance and the event reconstruction procedures, based on detailed simulations of the individual subsystems. Chapter 6 describes the analysis and physics reach for a representative sample of physics observables, from global event characteristics to hard processes.

587 citations

Journal ArticleDOI
Federica Spoto1, Federica Spoto2, Paolo Tanga2, Francois Mignard2  +498 moreInstitutions (86)
TL;DR: In this paper, the authors describe the processing of the Gaia DR2 data, and describe the criteria used to select the sample published in Gaia DR 2, and explore the data set to assess its quality.
Abstract: Context. The Gaia spacecraft of the European Space Agency (ESA) has been securing observations of solar system objects (SSOs) since the beginning of its operations. Data Release 2 (DR2) contains the observations of a selected sample of 14,099 SSOs. These asteroids have been already identified and have been numbered by the Minor Planet Center repository. Positions are provided for each Gaia observation at CCD level. As additional information, complementary to astrometry, the apparent brightness of SSOs in the unfiltered G band is also provided for selected observations.Aims. We explain the processing of SSO data, and describe the criteria we used to select the sample published in Gaia DR2. We then explore the data set to assess its quality.Methods. To exploit the main data product for the solar system in Gaia DR2, which is the epoch astrometry of asteroids, it is necessary to take into account the unusual properties of the uncertainty, as the position information is nearly one-dimensional. When this aspect is handled appropriately, an orbit fit can be obtained with post-fit residuals that are overall consistent with the a-priori error model that was used to define individual values of the astrometric uncertainty. The role of both random and systematic errors is described. The distribution of residuals allowed us to identify possible contaminants in the data set (such as stars). Photometry in the G band was compared to computed values from reference asteroid shapes and to the flux registered at the corresponding epochs by the red and blue photometers (RP and BP).Results. The overall astrometric performance is close to the expectations, with an optimal range of brightness G ~ 12 − 17. In this range, the typical transit-level accuracy is well below 1 mas. For fainter asteroids, the growing photon noise deteriorates the performance. Asteroids brighter than G ~ 12 are affected by a lower performance of the processing of their signals. The dramatic improvement brought by Gaia DR2 astrometry of SSOs is demonstrated by comparisons to the archive data and by preliminary tests on the detection of subtle non-gravitational effects.

584 citations

Journal ArticleDOI
TL;DR: In this paper, the V2O5 nanowires have been shown to exhibit an intrinsic catalytic activity towards classical peroxidase substrates such as 2,2-azino-bis (ABTS) and 3,3,5,5,-tetramethylbenzdine (TMB) in the presence of H2O2.
Abstract: V2O5 nanowires exhibit an intrinsic catalytic activity towards classical peroxidase substrates such as 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 3,3,5,5,-tetramethylbenzdine (TMB) in the presence of H2O2. These V2O5 nanowires show an optimum reactivity at a pH of 4.0 and the catalytic activity is dependent on the concentration. The Michaelis-Menten kinetics of the ABTS oxidation over these nanowires reveals a behavior similar to that of their natural vanadium-dependent haloperoxidase (V-HPO) counterparts. The V2O5 nanowires mediate the oxidation of ABTS in the presence of H2O2 with a turnover frequency (k(cat)) of 2.5 x 10(3) s(-1). The K-M values of the V2O5 nanowires for ABTS oxidation (0.4 mu M) and for H2O2 (2.9 mu M) at a pH of 4.0 are significantly smaller than those reported for horseradish peroxidases (HRP) and V-HPO indicating a higher affinity of the substrates for the V2O5 nanowire surface. Based on the kinetic parameters and similarity with vanadium-based complexes a mechanism is proposed where an intermediate metastable peroxo complex is formed as the first catalytic step. The nanostructured vanadium-based material can be re-used up to 10 times and retains its catalytic activity in a wide range of organic solvents (up to 90%) making it a promising mimic of peroxidase catalysts.

583 citations


Authors

Showing all 19716 results

NameH-indexPapersCitations
Joao Seixas1531538115070
A. Gomes1501862113951
Marco Costa1461458105096
António Amorim136147796519
Osamu Jinnouchi13588586104
P. Verdier133111183862
Andy Haas132109687742
Wendy Taylor131125289457
Steve McMahon13087878763
Timothy Andeen129106977593
Heather Gray12996680970
Filipe Veloso12888775496
Nuno Filipe Castro12896076945
Oliver Stelzer-Chilton128114179154
Isabel Marian Trigger12897477594
Network Information
Related Institutions (5)
VU University Amsterdam
75.6K papers, 3.4M citations

91% related

University of Padua
114.8K papers, 3.6M citations

91% related

University of Bologna
115.1K papers, 3.4M citations

91% related

University of Groningen
69.1K papers, 2.9M citations

91% related

Utrecht University
139.3K papers, 6.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023247
2022827
20214,520
20204,517
20193,810
20183,617