scispace - formally typeset
Search or ask a question
Institution

University of Lisbon

EducationLisbon, Lisboa, Portugal
About: University of Lisbon is a education organization based out in Lisbon, Lisboa, Portugal. It is known for research contribution in the topics: Population & Context (language use). The organization has 19122 authors who have published 48503 publications receiving 1102623 citations. The organization is also known as: Universidade de Lisboa & Lisbon University.


Papers
More filters
Book
01 Feb 1992
TL;DR: A review of the present understanding of the global climate system, consisting of the atmosphere, hydrosphere, cryosphere, lithosphere and biosphere, and their complex interactions and feedbacks is given from the point of view of a physicist as mentioned in this paper.
Abstract: A review of our present understanding of the global climate system, consisting of the atmosphere, hydrosphere, cryosphere, lithosphere, and biosphere, and their complex interactions and feedbacks is given from the point of view of a physicist. This understanding is based both on real observations and on the results from numerical simulations. The main emphasis in this review is on the atmosphere and oceans. First, balance equations describing the large-scale climate and its evolution in time are derived from the basic thermohydrodynamic laws of classical physics. The observed atmosphere-ocean system is then described by showing how the balances of radiation, mass, angular momentum, water, and energy are maintained during present climatic conditions. Next, a hierarchy of mathematical models that successfully simulate various aspects of the climate is discussed, and examples are given of how three-dimensional general circulation models are being used to increase our understanding of the global climate "machine." Finally, the possible impact of human activities on climate is discussed, with main emphasis on likely future heating due to the release of carbon dioxide in the atmosphere.

2,358 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Lorenzo Galluzzi3, Stuart A. Aaronson4, John M. Abrams5, Emad S. Alnemri6, David W. Andrews7, Eric H. Baehrecke8, Nicolas G. Bazan9, Mikhail V. Blagosklonny10, Klas Blomgren11, Klas Blomgren12, Christoph Borner13, Dale E. Bredesen14, Dale E. Bredesen15, Catherine Brenner16, Maria Castedo3, Maria Castedo2, Maria Castedo1, John A. Cidlowski17, Aaron Ciechanover18, Gerald M. Cohen19, V De Laurenzi20, R De Maria21, Mohanish Deshmukh22, Brian David Dynlacht23, Wafik S. El-Deiry24, Richard A. Flavell25, Richard A. Flavell26, Simone Fulda27, Carmen Garrido28, Carmen Garrido3, Pierre Golstein16, Pierre Golstein29, Pierre Golstein3, Marie-Lise Gougeon30, Douglas R. Green, Hinrich Gronemeyer16, Hinrich Gronemeyer31, Hinrich Gronemeyer3, György Hajnóczky6, J. M. Hardwick32, Michael O. Hengartner33, Hidenori Ichijo34, Marja Jäättelä, Oliver Kepp3, Oliver Kepp2, Oliver Kepp1, Adi Kimchi35, Daniel J. Klionsky36, Richard A. Knight37, Sally Kornbluth38, Sharad Kumar, Beth Levine5, Beth Levine26, Stuart A. Lipton, Enrico Lugli17, Frank Madeo39, Walter Malorni21, Jean-Christophe Marine40, Seamus J. Martin41, Jan Paul Medema42, Patrick Mehlen43, Patrick Mehlen16, Gerry Melino44, Gerry Melino19, Ute M. Moll45, Ute M. Moll46, Eugenia Morselli1, Eugenia Morselli2, Eugenia Morselli3, Shigekazu Nagata47, Donald W. Nicholson48, Pierluigi Nicotera19, Gabriel Núñez36, Moshe Oren35, Josef M. Penninger49, Shazib Pervaiz50, Marcus E. Peter51, Mauro Piacentini44, Jochen H. M. Prehn52, Hamsa Puthalakath53, Gabriel A. Rabinovich54, Rosario Rizzuto55, Cecília M. P. Rodrigues56, David C. Rubinsztein57, Thomas Rudel58, Luca Scorrano59, Hans-Uwe Simon60, Hermann Steller61, Hermann Steller26, J. Tschopp62, Yoshihide Tsujimoto63, Peter Vandenabeele64, Ilio Vitale3, Ilio Vitale2, Ilio Vitale1, Karen H. Vousden65, Richard J. Youle17, Junying Yuan66, Boris Zhivotovsky67, Guido Kroemer1, Guido Kroemer3, Guido Kroemer2 
University of Paris-Sud1, Institut Gustave Roussy2, French Institute of Health and Medical Research3, Icahn School of Medicine at Mount Sinai4, University of Texas Southwestern Medical Center5, Thomas Jefferson University6, McMaster University7, University of Massachusetts Medical School8, LSU Health Sciences Center New Orleans9, Roswell Park Cancer Institute10, University of Gothenburg11, Boston Children's Hospital12, University of Freiburg13, Buck Institute for Research on Aging14, University of California, San Francisco15, Centre national de la recherche scientifique16, National Institutes of Health17, Technion – Israel Institute of Technology18, University of Leicester19, University of Chieti-Pescara20, Istituto Superiore di Sanità21, University of North Carolina at Chapel Hill22, New York University23, University of Pennsylvania24, Yale University25, Howard Hughes Medical Institute26, University of Ulm27, University of Burgundy28, Aix-Marseille University29, Pasteur Institute30, University of Strasbourg31, Johns Hopkins University32, University of Zurich33, University of Tokyo34, Weizmann Institute of Science35, University of Michigan36, University College London37, Duke University38, University of Graz39, Ghent University40, Trinity College, Dublin41, University of Amsterdam42, University of Lyon43, University of Rome Tor Vergata44, Stony Brook University45, University of Göttingen46, Kyoto University47, Merck & Co.48, Austrian Academy of Sciences49, National University of Singapore50, University of Chicago51, Royal College of Surgeons in Ireland52, La Trobe University53, University of Buenos Aires54, University of Padua55, University of Lisbon56, University of Cambridge57, University of Würzburg58, University of Geneva59, University of Bern60, Rockefeller University61, University of Lausanne62, Osaka University63, University of California, San Diego64, University of Glasgow65, Harvard University66, Karolinska Institutet67
TL;DR: A nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls is provided and the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells is emphasized.
Abstract: Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios Thus far, dozens of methods have been proposed to quantify cell death-related parameters However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells

2,218 citations

Journal ArticleDOI
TL;DR: A new numerical method based on a combination of the classical shape derivative and of the level-set method for front propagation, which can easily handle topology changes and is strongly dependent on the initial guess.

2,176 citations

Journal ArticleDOI
TL;DR: The first Gaia data release, Gaia DR1 as discussed by the authors, consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues.
Abstract: Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims: A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods: The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results: Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues - a realisation of the Tycho-Gaia Astrometric Solution (TGAS) - and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of 3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr-1 for the proper motions. A systematic component of 0.3 mas should be added to the parallax uncertainties. For the subset of 94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr-1. For the secondary astrometric data set, the typical uncertainty of the positions is 10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to0.03 mag over the magnitude range 5 to 20.7. Conclusions: Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data.

2,174 citations

Journal ArticleDOI
TL;DR: The MSE method is applied to the analysis of coding and noncoding DNA sequences and it is found that the latter have higher multiscale entropy, consistent with the emerging view that so-called "junk DNA" sequences contain important biological information.
Abstract: Traditional approaches to measuring the complexity of biological signals fail to account for the multiple time scales inherent in such time series. These algorithms have yielded contradictory findings when applied to real-world datasets obtained in health and disease states. We describe in detail the basis and implementation of the multiscale entropy (MSE) method. We extend and elaborate previous findings showing its applicability to the fluctuations of the human heartbeat under physiologic and pathologic conditions. The method consistently indicates a loss of complexity with aging, with an erratic cardiac arrhythmia (atrial fibrillation), and with a life-threatening syndrome (congestive heart failure). Further, these different conditions have distinct MSE curve profiles, suggesting diagnostic uses. The results support a general "complexity-loss" theory of aging and disease. We also apply the method to the analysis of coding and noncoding DNA sequences and find that the latter have higher multiscale entropy, consistent with the emerging view that so-called "junk DNA" sequences contain important biological information.

2,101 citations


Authors

Showing all 19716 results

NameH-indexPapersCitations
Joao Seixas1531538115070
A. Gomes1501862113951
Marco Costa1461458105096
António Amorim136147796519
Osamu Jinnouchi13588586104
P. Verdier133111183862
Andy Haas132109687742
Wendy Taylor131125289457
Steve McMahon13087878763
Timothy Andeen129106977593
Heather Gray12996680970
Filipe Veloso12888775496
Nuno Filipe Castro12896076945
Oliver Stelzer-Chilton128114179154
Isabel Marian Trigger12897477594
Network Information
Related Institutions (5)
VU University Amsterdam
75.6K papers, 3.4M citations

91% related

University of Padua
114.8K papers, 3.6M citations

91% related

University of Bologna
115.1K papers, 3.4M citations

91% related

University of Groningen
69.1K papers, 2.9M citations

91% related

Utrecht University
139.3K papers, 6.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023247
2022828
20214,521
20204,517
20193,810
20183,617