scispace - formally typeset
Search or ask a question

Showing papers by "University of Liverpool published in 2021"


Journal ArticleDOI
TL;DR: The 2020 EAU-EANM-ESTRO-ESUR-SIOG guidelines on PCa guidelines summarise the most recent findings and advice for their use in clinical practice and include a strong recommendation to consider moderate hypofractionation in intermediate-risk patients.

1,369 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations


Journal ArticleDOI
04 Mar 2021-Nature
TL;DR: The GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2244 critically ill Covid-19 patients from 208 UK intensive care units is reported, finding evidence in support of a causal link from low expression of IFNAR2, and high expression of TYK2, to life-threatening disease.
Abstract: Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10−8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10−8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10−12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10−8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte–macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice. A genome-wide association study of critically ill patients with COVID-19 identifies genetic signals that relate to important host antiviral defence mechanisms and mediators of inflammatory organ damage that may be targeted by repurposing drug treatments.

941 citations


Journal ArticleDOI
TL;DR: In this paper, the authors showed that adults with obesity can achieve weight loss with once-weekly semaglutide at a dose of 24 mg as an anesthetic drug.
Abstract: Background Obesity is a global health challenge with few pharmacologic options Whether adults with obesity can achieve weight loss with once-weekly semaglutide at a dose of 24 mg as an a

859 citations


Journal ArticleDOI
TL;DR: This article found that those resistant to a COVID-19 vaccine were less likely to obtain information about the pandemic from traditional and authoritative sources and had similar levels of mistrust in these sources compared to vaccine accepting respondents.
Abstract: Identifying and understanding COVID-19 vaccine hesitancy within distinct populations may aid future public health messaging. Using nationally representative data from the general adult populations of Ireland (N = 1041) and the United Kingdom (UK; N = 2025), we found that vaccine hesitancy/resistance was evident for 35% and 31% of these populations respectively. Vaccine hesitant/resistant respondents in Ireland and the UK differed on a number of sociodemographic and health-related variables but were similar across a broad array of psychological constructs. In both populations, those resistant to a COVID-19 vaccine were less likely to obtain information about the pandemic from traditional and authoritative sources and had similar levels of mistrust in these sources compared to vaccine accepting respondents. Given the geographical proximity and socio-economic similarity of the populations studied, it is not possible to generalize findings to other populations, however, the methodology employed here may be useful to those wishing to understand COVID-19 vaccine hesitancy elsewhere.

716 citations


Journal ArticleDOI
TL;DR: The 2020 EAU-EANM-ESTRO-ESUR-SIOG guidelines on PCa summarise the most recent findings and advice for use in clinical practice and guide the clinician in the discussion with the patient on the treatment decisions to be taken.

561 citations


Journal ArticleDOI
04 Mar 2021-Cell
TL;DR: In this paper, the authors demonstrate that the immunodominant SARS-CoV-2 spike (S) receptor binding motif (RBM) is a highly variable region of S and provide epidemiological, clinical, and molecular characterization of a prevalent, sentinel RBM mutation, N439K.

483 citations


Journal ArticleDOI
01 Jan 2021-Appetite
TL;DR: The COVID-19 crisis may have had a disproportionately large and negative influence on weight-related behaviors among adults with higher BMI, and was predictive of greater overeating and lower physical activity in lockdown.

466 citations


Journal ArticleDOI
27 Apr 2021-JAMA
TL;DR: In this paper, the authors evaluated the effects of intermediate-dose vs standard-dose prophylactic anticoagulation among patients with COVID-19 admitted to the intensive care unit (ICU).
Abstract: Importance Thrombotic events are commonly reported in critically ill patients with COVID-19. Limited data exist to guide the intensity of antithrombotic prophylaxis. Objective To evaluate the effects of intermediate-dose vs standard-dose prophylactic anticoagulation among patients with COVID-19 admitted to the intensive care unit (ICU). Design, Setting, and Participants Multicenter randomized trial with a 2 × 2 factorial design performed in 10 academic centers in Iran comparing intermediate-dose vs standard-dose prophylactic anticoagulation (first hypothesis) and statin therapy vs matching placebo (second hypothesis; not reported in this article) among adult patients admitted to the ICU with COVID-19. Patients were recruited between July 29, 2020, and November 19, 2020. The final follow-up date for the 30-day primary outcome was December 19, 2020. Interventions Intermediate-dose (enoxaparin, 1 mg/kg daily) (n = 276) vs standard prophylactic anticoagulation (enoxaparin, 40 mg daily) (n = 286), with modification according to body weight and creatinine clearance. The assigned treatments were planned to be continued until completion of 30-day follow-up. Main Outcomes and Measures The primary efficacy outcome was a composite of venous or arterial thrombosis, treatment with extracorporeal membrane oxygenation, or mortality within 30 days, assessed in randomized patients who met the eligibility criteria and received at least 1 dose of the assigned treatment. Prespecified safety outcomes included major bleeding according to the Bleeding Academic Research Consortium (type 3 or 5 definition), powered for noninferiority (a noninferiority margin of 1.8 based on odds ratio), and severe thrombocytopenia (platelet count Results Among 600 randomized patients, 562 (93.7%) were included in the primary analysis (median [interquartile range] age, 62 [50-71] years; 237 [42.2%] women). The primary efficacy outcome occurred in 126 patients (45.7%) in the intermediate-dose group and 126 patients (44.1%) in the standard-dose prophylaxis group (absolute risk difference, 1.5% [95% CI, −6.6% to 9.8%]; odds ratio, 1.06 [95% CI, 0.76-1.48];P = .70). Major bleeding occurred in 7 patients (2.5%) in the intermediate-dose group and 4 patients (1.4%) in the standard-dose prophylaxis group (risk difference, 1.1% [1-sided 97.5% CI, −∞ to 3.4%]; odds ratio, 1.83 [1-sided 97.5% CI, 0.00-5.93]), not meeting the noninferiority criteria (Pfor noninferiority >.99). Severe thrombocytopenia occurred only in patients assigned to the intermediate-dose group (6 vs 0 patients; risk difference, 2.2% [95% CI, 0.4%-3.8%];P = .01). Conclusions and Relevance Among patients admitted to the ICU with COVID-19, intermediate-dose prophylactic anticoagulation, compared with standard-dose prophylactic anticoagulation, did not result in a significant difference in the primary outcome of a composite of adjudicated venous or arterial thrombosis, treatment with extracorporeal membrane oxygenation, or mortality within 30 days. These results do not support the routine empirical use of intermediate-dose prophylactic anticoagulation in unselected patients admitted to the ICU with COVID-19. Trial Registration ClinicalTrials.gov Identifier:NCT04486508

447 citations


Journal ArticleDOI
TL;DR: Current understanding of the pathogenic mechanisms involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the progression of coronav virus disease 2019 (COVID-19) is described, focusing on the immunological hyper-response and the induction of widespread endothelial damage, complement-associated blood clotting and systemic microangiopathy, as well as the effects of these processes on the kidney.
Abstract: In December 2019, a novel coronavirus was isolated from the respiratory epithelium of patients with unexplained pneumonia in Wuhan, China. This pathogen, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causes a pathogenic condition that has been termed coronavirus disease 2019 (COVID-19) and has reached pandemic proportions. As of 17 September 2020, more than 30 million confirmed SARS-CoV-2 infections have been reported in 204 different countries, claiming more than 1 million lives worldwide. Accumulating evidence suggests that SARS-CoV-2 infection can lead to a variety of clinical conditions, ranging from asymptomatic to life-threatening cases. In the early stages of the disease, most patients experience mild clinical symptoms, including a high fever and dry cough. However, 20% of patients rapidly progress to severe illness characterized by atypical interstitial bilateral pneumonia, acute respiratory distress syndrome and multiorgan dysfunction. Almost 10% of these critically ill patients subsequently die. Insights into the pathogenic mechanisms underlying SARS-CoV-2 infection and COVID-19 progression are emerging and highlight the critical role of the immunological hyper-response - characterized by widespread endothelial damage, complement-induced blood clotting and systemic microangiopathy - in disease exacerbation. These insights may aid the identification of new or existing therapeutic interventions to limit the progression of early disease and treat severe cases.

414 citations


Journal ArticleDOI
TL;DR: The authors performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci, including genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics.
Abstract: Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies.

Journal ArticleDOI
TL;DR: In this article, the authors examined the mental health implications of the COVID-19 pandemic in low-income and middle-income countries (LMICs) in four parts: the emerging literature on the impact of the pandemic on mental health, which shows high rates of psychological distress and early warning signs of an increase in mental health disorders.

Journal ArticleDOI
TL;DR: It is demonstrated that baseline liver disease stage and ALD are independent risk factor for death from COVID-19, which is the largest reported cohort of CLD and cirrhosis patients with SARS-CoV-2 infection to date.


Journal ArticleDOI
06 Feb 2021-Vaccine
TL;DR: In this paper, the percentage of the population intending to vaccinate, unsure, or intending to refuse a COVID-19 vaccine when available was examined using large nationally representative samples.

Journal ArticleDOI
Rachael A. Evans1, Hamish McAuley1, Ewen M Harrison2, Aarti Shikotra1  +777 moreInstitutions (30)
TL;DR: In this paper, the effects of COVID-19-related hospitalisation on health and employment, to identify factors associated with recovery, and to describe recovery phenotypes were determined.

Journal ArticleDOI
Alasdair Munro1, Alasdair Munro2, Leila Janani3, Victoria Cornelius3  +311 moreInstitutions (22)
TL;DR: The COV-BOOST trial as mentioned in this paper investigated the reactogenicity and immunogenicity of seven different COVID-19 vaccines as a third dose after two doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd) or BNT162b2 (Pfizer-BioNtech, hearafter referred to As BNT).

Journal ArticleDOI
TL;DR: This study identified substantial increases in distress in the US during the emergence of the COVID-19 crisis that largely diminished in the weeks that followed and suggests that population level resilience in mental health may be occurring in response to the pandemic.

Journal ArticleDOI
TL;DR: A structure-driven degradation mechanism for NMC811, in which a proportion of the material exhibits a lowered accessible state of charge at the end of charging after repetitive cycling and becomes fatigued, is reported and provides fundamental insights into strategies to help mitigate this degradation process.
Abstract: Ni-rich layered cathode materials are among the most promising candidates for high-energy-density Li-ion batteries, yet their degradation mechanisms are still poorly understood. We report a structure-driven degradation mechanism for NMC811 (LiNi0.8Mn0.1Co0.1O2), in which a proportion of the material exhibits a lowered accessible state of charge at the end of charging after repetitive cycling and becomes fatigued. Operando synchrotron long-duration X-ray diffraction enabled by a laser-thinned coin cell shows the emergence and growth in the concentration of this fatigued phase with cycle number. This degradation is structure driven and is not solely due to kinetic limitations or intergranular cracking: no bulk phase transformations, no increase in Li/Ni antisite mixing and no notable changes in the local structure or Li-ion mobility of the bulk are seen in aged NMCs. Instead, we propose that this degradation stems from the high interfacial lattice strain between the reconstructed surface and the bulk layered structure that develops when the latter is at states of charge above a distinct threshold of approximately 75%. This mechanism is expected to be universal in Ni-rich layered cathodes. Our findings provide fundamental insights into strategies to help mitigate this degradation process. Ni-rich layered cathode materials are promising for high-energy-density Li-ion batteries, but their degradation mechanisms are still poorly understood. A structure-driven mechanism with a lowered accessible state of charge after repetitive cycling is proposed for a typical NMC811 cathode.

Journal ArticleDOI
01 Mar 2021-BMJ Open
TL;DR: In this paper, the authors assessed medium-term organ impairment in symptomatic individuals following recovery from acute SARS-CoV-2 infection and age-matched healthy controls, and found that 60% of individuals had 10 or more symptoms and 60% had severe post-COVID-19 syndrome.
Abstract: Objective To assess medium-term organ impairment in symptomatic individuals following recovery from acute SARS-CoV-2 infection. Design Baseline findings from a prospective, observational cohort study. Setting Community-based individuals from two UK centres between 1 April and 14 September 2020. Participants Individuals ≥18 years with persistent symptoms following recovery from acute SARS-CoV-2 infection and age-matched healthy controls. Intervention Assessment of symptoms by standardised questionnaires (EQ-5D-5L, Dyspnoea-12) and organ-specific metrics by biochemical assessment and quantitative MRI. Main outcome measures Severe post-COVID-19 syndrome defined as ongoing respiratory symptoms and/or moderate functional impairment in activities of daily living; single-organ and multiorgan impairment (heart, lungs, kidneys, liver, pancreas, spleen) by consensus definitions at baseline investigation. Results 201 individuals (mean age 45, range 21–71 years, 71% female, 88% white, 32% healthcare workers) completed the baseline assessment (median of 141 days following SARS-CoV-2 infection, IQR 110–162). The study population was at low risk of COVID-19 mortality (obesity 20%, hypertension 7%, type 2 diabetes 2%, heart disease 5%), with only 19% hospitalised with COVID-19. 42% of individuals had 10 or more symptoms and 60% had severe post-COVID-19 syndrome. Fatigue (98%), muscle aches (87%), breathlessness (88%) and headaches (83%) were most frequently reported. Mild organ impairment was present in the heart (26%), lungs (11%), kidneys (4%), liver (28%), pancreas (40%) and spleen (4%), with single-organ and multiorgan impairment in 70% and 29%, respectively. Hospitalisation was associated with older age (p=0.001), non-white ethnicity (p=0.016), increased liver volume (p Conclusions In individuals at low risk of COVID-19 mortality with ongoing symptoms, 70% have impairment in one or more organs 4 months after initial COVID-19 symptoms, with implications for healthcare and public health, which have assumed low risk in young people with no comorbidities. Trial registration number NCT04369807; Pre-results.

Journal ArticleDOI
TL;DR: A national consensus management pathway is developed for the UK to provide guidance for clinicians caring for children with PIMS-TS, including blood markers to help determine the severity of disease, an echocardiogram, and a viral and septic screen to exclude other infectious causes of illness.

Journal ArticleDOI
TL;DR: In this article, the authors developed SCoPE2, which substantially increases quantitative accuracy and throughput while lowering cost and hands-on time by introducing automated and miniaturized sample preparation, and demonstrated the potential for inferring transcriptional and post-transcriptional regulation from variability across single cells.
Abstract: Macrophages are innate immune cells with diverse functional and molecular phenotypes. This diversity is largely unexplored at the level of single-cell proteomes because of the limitations of quantitative single-cell protein analysis. To overcome this limitation, we develop SCoPE2, which substantially increases quantitative accuracy and throughput while lowering cost and hands-on time by introducing automated and miniaturized sample preparation. These advances enable us to analyze the emergence of cellular heterogeneity as homogeneous monocytes differentiate into macrophage-like cells in the absence of polarizing cytokines. SCoPE2 quantifies over 3042 proteins in 1490 single monocytes and macrophages in 10 days of instrument time, and the quantified proteins allow us to discern single cells by cell type. Furthermore, the data uncover a continuous gradient of proteome states for the macrophages, suggesting that macrophage heterogeneity may emerge in the absence of polarizing cytokines. Parallel measurements of transcripts by 10× Genomics suggest that our measurements sample 20-fold more protein copies than RNA copies per gene, and thus, SCoPE2 supports quantification with improved count statistics. This allowed exploring regulatory interactions, such as interactions between the tumor suppressor p53, its transcript, and the transcripts of genes regulated by p53. Even in a homogeneous environment, macrophage proteomes are heterogeneous. This heterogeneity correlates to the inflammatory axis of classically and alternatively activated macrophages. Our methodology lays the foundation for automated and quantitative single-cell analysis of proteins by mass spectrometry and demonstrates the potential for inferring transcriptional and post-transcriptional regulation from variability across single cells.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper focused on MSW in eight eastern coastal regions in China on the aspects of background information (MSW generation, population, gross domestic product (GDP)/gross regional product (GRP)), related laws (acts, regulations), MSW characteristics (composition, separation, collection, transport) and TTRU.

Journal ArticleDOI
TL;DR: The data provide evidence for increased scientific and public engagement with preprints related to COVID-19, as well as changes in the use of preprints by journalists and policymakers, and for changes in preprinting and publishing behaviour.
Abstract: The world continues to face a life-threatening viral pandemic. The virus underlying the Coronavirus Disease 2019 (COVID-19), Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has caused over 98 million confirmed cases and 2.2 million deaths since January 2020. Although the most recent respiratory viral pandemic swept the globe only a decade ago, the way science operates and responds to current events has experienced a cultural shift in the interim. The scientific community has responded rapidly to the COVID-19 pandemic, releasing over 125,000 COVID-19-related scientific articles within 10 months of the first confirmed case, of which more than 30,000 were hosted by preprint servers. We focused our analysis on bioRxiv and medRxiv, 2 growing preprint servers for biomedical research, investigating the attributes of COVID-19 preprints, their access and usage rates, as well as characteristics of their propagation on online platforms. Our data provide evidence for increased scientific and public engagement with preprints related to COVID-19 (COVID-19 preprints are accessed more, cited more, and shared more on various online platforms than non-COVID-19 preprints), as well as changes in the use of preprints by journalists and policymakers. We also find evidence for changes in preprinting and publishing behaviour: COVID-19 preprints are shorter and reviewed faster. Our results highlight the unprecedented role of preprints and preprint servers in the dissemination of COVID-19 science and the impact of the pandemic on the scientific communication landscape.

Journal ArticleDOI
01 Dec 2021-Nature
TL;DR: In this paper, the authors used electrochemical, in situ Raman spectroscopic and computational techniques to investigate the interfacial water on atomically flat Pd single-crystal surfaces.
Abstract: Understanding the structure and dynamic process of water at the solid–liquid interface is an extremely important topic in surface science, energy science and catalysis1–3. As model catalysts, atomically flat single-crystal electrodes exhibit well-defined surface and electric field properties, and therefore may be used to elucidate the relationship between structure and electrocatalytic activity at the atomic level4,5. Hence, studying interfacial water behaviour on single-crystal surfaces provides a framework for understanding electrocatalysis6,7. However, interfacial water is notoriously difficult to probe owing to interference from bulk water and the complexity of interfacial environments8. Here, we use electrochemical, in situ Raman spectroscopic and computational techniques to investigate the interfacial water on atomically flat Pd single-crystal surfaces. Direct spectral evidence reveals that interfacial water consists of hydrogen-bonded and hydrated Na+ ion water. At hydrogen evolution reaction (HER) potentials, dynamic changes in the structure of interfacial water were observed from a random distribution to an ordered structure due to bias potential and Na+ ion cooperation. Structurally ordered interfacial water facilitated high-efficiency electron transfer across the interface, resulting in higher HER rates. The electrolytes and electrode surface effects on interfacial water were also probed and found to affect water structure. Therefore, through local cation tuning strategies, we anticipate that these results may be generalized to enable ordered interfacial water to improve electrocatalytic reaction rates. Interfacial water consists of hydrogen-bonded water and Na·H2O, its structure changes at hydrogen evolution reaction (HER) potentials, and when structurally ordered it aids interfacial electron transfer, resulting in higher HER rates.

Journal ArticleDOI
16 Oct 2021-Cell
TL;DR: In this paper, an extension of the interval between vaccine doses for the BNT162b2 mRNA vaccine was introduced in the United Kingdom to accelerate population coverage with a single dose, which showed that this single dose induces severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (NAb) responses and a sustained B and T-cell response to the spike protein.

Journal ArticleDOI
26 Apr 2021-Gut
TL;DR: In this article, the authors investigated whether patients with inflammatory bowel disease treated with infliximab have attenuated serological responses to a single dose of a SARS-CoV-2 vaccine.
Abstract: Objective Delayed second dose SARS-CoV-2 vaccination trades maximal effectiveness for a lower level of immunity across more of the population. We investigated whether patients with inflammatory bowel disease treated with infliximab have attenuated serological responses to a single dose of a SARS-CoV-2 vaccine. Design Antibody responses and seroconversion rates in infliximab-treated patients (n=865) were compared with a cohort treated with vedolizumab (n=428), a gut-selective anti-integrin α4β7 monoclonal antibody. Our primary outcome was anti-SARS-CoV-2 spike (S) antibody concentrations, measured using the Elecsys anti-SARS-CoV-2 spike (S) antibody assay 3–10 weeks after vaccination, in patients without evidence of prior infection. Secondary outcomes were seroconversion rates (defined by a cut-off of 15 U/mL), and antibody responses following past infection or a second dose of the BNT162b2 vaccine. Results Geometric mean (SD) anti-SARS-CoV-2 antibody concentrations were lower in patients treated with infliximab than vedolizumab, following BNT162b2 (6.0 U/mL (5.9) vs 28.8 U/mL (5.4) p Conclusion Infliximab is associated with attenuated immunogenicity to a single dose of the BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines. Vaccination after SARS-CoV-2 infection, or a second dose of vaccine, led to seroconversion in most patients. Delayed second dosing should be avoided in patients treated with infliximab. Trial registration number ISRCTN45176516.

Journal ArticleDOI
Clark D Russell1, Cameron J Fairfield1, Thomas M Drake1, Lance Turtle2  +352 moreInstitutions (9)
02 Jun 2021
TL;DR: The International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study as discussed by the authors is an ongoing, prospective cohort study recruiting inpatients from 260 hospitals in England, Scotland, and Wales, conducted by the ISARIC Coronavirus Clinical Characterization Consortium.
Abstract: Summary Background Microbiological characterisation of co-infections and secondary infections in patients with COVID-19 is lacking, and antimicrobial use is high. We aimed to describe microbiologically confirmed co-infections and secondary infections, and antimicrobial use, in patients admitted to hospital with COVID-19. Methods The International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study is an ongoing, prospective cohort study recruiting inpatients from 260 hospitals in England, Scotland, and Wales, conducted by the ISARIC Coronavirus Clinical Characterisation Consortium. Patients with a confirmed or clinician-defined high likelihood of SARS-CoV-2 infection were eligible for inclusion in the ISARIC WHO CCP-UK study. For this specific study, we excluded patients with a recorded negative SARS-CoV-2 test result and those without a recorded outcome at 28 days after admission. Demographic, clinical, laboratory, therapeutic, and outcome data were collected using a prespecified case report form. Organisms considered clinically insignificant were excluded. Findings We analysed data from 48 902 patients admitted to hospital between Feb 6 and June 8, 2020. The median patient age was 74 years (IQR 59–84) and 20 786 (42·6%) of 48 765 patients were female. Microbiological investigations were recorded for 8649 (17·7%) of 48 902 patients, with clinically significant COVID-19-related respiratory or bloodstream culture results recorded for 1107 patients. 762 (70·6%) of 1080 infections were secondary, occurring more than 2 days after hospital admission. Staphylococcus aureus and Haemophilus influenzae were the most common pathogens causing respiratory co-infections (diagnosed ≤2 days after admission), with Enterobacteriaceae and S aureus most common in secondary respiratory infections. Bloodstream infections were most frequently caused by Escherichia coli and S aureus. Among patients with available data, 13 390 (37·0%) of 36 145 had received antimicrobials in the community for this illness episode before hospital admission and 39 258 (85·2%) of 46 061 patients with inpatient antimicrobial data received one or more antimicrobials at some point during their admission (highest for patients in critical care). We identified frequent use of broad-spectrum agents and use of carbapenems rather than carbapenem-sparing alternatives. Interpretation In patients admitted to hospital with COVID-19, microbiologically confirmed bacterial infections are rare, and more likely to be secondary infections. Gram-negative organisms and S aureus are the predominant pathogens. The frequency and nature of antimicrobial use are concerning, but tractable targets for stewardship interventions exist. Funding National Institute for Health Research (NIHR), UK Medical Research Council, Wellcome Trust, UK Department for International Development, Bill & Melinda Gates Foundation, EU Platform for European Preparedness Against (Re-)emerging Epidemics, NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, and NIHR HPRU in Respiratory Infections at Imperial College London.

Journal ArticleDOI
TL;DR: A comprehensive review of recent, encouraging research achievements in CO2 conversion using NTP is provided in this paper, where the authors discuss the recent progress in different NTP sources in relation to product selectivity, conversion, and energy efficiency.
Abstract: Increasing attention has been drawn to carbon dioxide (CO2) conversion into higher-value platform chemicals and synthetic fuels due to global warming. These reactions require a large amount of thermal energy in order to proceed, which is ascribable to the high stability of the bonds in CO2. Non-thermal plasma (NTP)-catalytic CO2 conversion has emerged as a promising method to significantly reduce the reaction temperature as plasma can activate CO2 at as low as room temperature and atmosphere pressure. However, this technology requires a paradigm shift in process design to enhance plasma-catalytic performance. CO2 conversion using plasma-catalysis has great potential to increase reaction efficiencies due to the synergetic effects between the plasma and catalysts. It is crucial to present the recent progress in CO2 conversion and utilization whilst providing a research prospects framework and direction for future research in both industries and laboratories. Herein, a comprehensive review of recent, encouraging research achievements in CO2 conversion using NTP is provided. The topics reviewed in this work are: i) the recent progress in different NTP sources in relation to product selectivity, conversion, and energy efficiency; ii) plasma-based CO2 reactions and applications; iii) CO2 conversion integrated with CO2 capture; and iv) current challenges and future perspectives. The high market value of the possible products from this process, including chemicals and fuels, make commercialization of the process feasible. Furthermore, the selectivities of these products can be further improved by developing suitable catalysts with effective sensitivities and performances under the intricate conditions needed to make these products. There is an urgent need for further studies to be performed in this emerging field.

Journal ArticleDOI
TL;DR: Tissue-specific immunopathology occurs in COVID-19, implicating a significant component of the immune-mediated, virus-independent immunopathologic process as a primary mechanism in severe disease.
Abstract: Rationale: In life-threatening coronavirus disease (COVID-19), corticosteroids reduce mortality, suggesting that immune responses have a causal role in death. Whether this deleterious inflammation is primarily a direct reaction to the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or an independent immunopathologic process is unknown.Objectives: To determine SARS-CoV-2 organotropism and organ-specific inflammatory responses and the relationships among viral presence, inflammation, and organ injury.Methods: Tissue was acquired from 11 detailed postmortem examinations. SARS-CoV-2 organotropism was mapped by using multiplex PCR and sequencing, with cellular resolution achieved by in situ viral S (spike) protein detection. Histologic evidence of inflammation was quantified from 37 anatomic sites, and the pulmonary immune response was characterized by using multiplex immunofluorescence.Measurements and Main Results: Multiple aberrant immune responses in fatal COVID-19 were found, principally involving the lung and reticuloendothelial system, and these were not clearly topologically associated with the virus. Inflammation and organ dysfunction did not map to the tissue and cellular distribution of SARS-CoV-2 RNA and protein between or within tissues. An arteritis was identified in the lung, which was further characterized as a monocyte/myeloid-rich vasculitis, and occurred together with an influx of macrophage/monocyte-lineage cells into the pulmonary parenchyma. In addition, stereotyped abnormal reticuloendothelial responses, including excessive reactive plasmacytosis and iron-laden macrophages, were present and dissociated from viral presence in lymphoid tissues.Conclusions: Tissue-specific immunopathology occurs in COVID-19, implicating a significant component of the immune-mediated, virus-independent immunopathologic process as a primary mechanism in severe disease. Our data highlight novel immunopathologic mechanisms and validate ongoing and future efforts to therapeutically target aberrant macrophage and plasma-cell responses as well as promote pathogen tolerance in COVID-19.