scispace - formally typeset
Search or ask a question
Institution

University of Ljubljana

EducationLjubljana, Slovenia
About: University of Ljubljana is a education organization based out in Ljubljana, Slovenia. It is known for research contribution in the topics: Population & Liquid crystal. The organization has 17210 authors who have published 47013 publications receiving 1082684 citations. The organization is also known as: Univerza v Ljubljani.


Papers
More filters
Journal ArticleDOI
TL;DR: A comparative review of the two conventional methods, electrocardiogram (ECG) and photoplethysmography (PPG), and the novel methods of non-contact measuring of HR with capacitively coupled ECG, Doppler radar, optical vibrocardiography, thermal imaging, RGB camera and HR from speech.

248 citations

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2954 moreInstitutions (201)
TL;DR: In this paper, the results of a search for pair production of supersymmetric partners of the Standard Model third-generation quarks are reported using 20.1 fb-1 of pp collisions collected by the ATLAS experiment at the Large Hadron Collider.
Abstract: The results of a search for pair production of supersymmetric partners of the Standard Model third-generation quarks are reported. This search uses 20.1 fb-1 of pp collisions at sqrt{s}=8 TeV collected by the ATLAS experiment at the Large Hadron Collider. The lightest bottom and top squarks (b1 and t1 respectively) are searched for in a final state with large missing transverse momentum and two jets identified as originating from b-quarks. No excess of events above the expected level of Standard Model background is found. The results are used to set upper limits on the visible cross section for processes beyond the Standard Model. Exclusion limits at the 95% confidence level on the masses of the third-generation squarks are derived in phenomenological supersymmetric R-parity-conserving models in which either the bottom or the top squark is the lightest squark. The b1 is assumed to decay via b1->b chi0 and the t via t1->b chipm, with undetectable products of the subsequent decay of the chipm due to the small mass splitting between the chipm and the chi0.

248 citations

Journal ArticleDOI
Georges Aad1, Alexander Kupco2, Samuel Webb3, Timo Dreyer4  +3380 moreInstitutions (206)
TL;DR: In this article, a search for high-mass dielectron and dimuon resonances in the mass range of 250 GeV to 6 TeV was performed at the Large Hadron Collider.

248 citations

Journal ArticleDOI
Morad Aaboud, Georges Aad1, Brad Abbott2, Jalal Abdallah3  +2906 moreInstitutions (214)
TL;DR: In this paper, Dijet events are studied in the proton-proton collision dataset recorded at root s = 13 TeV with the ATLAS detector at the Large Hadron Collider in 2015 and 2016.
Abstract: Dijet events are studied in the proton-proton collision dataset recorded at root s = 13 TeV with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to integrated lumino ...

248 citations

Journal ArticleDOI
TL;DR: The potential of state-of-the-art data science approaches for personalized medicine is reviewed, open challenges are discussed, and directions that may help to overcome them in the future are highlighted.
Abstract: Personalized, precision, P4, or stratified medicine is understood as a medical approach in which patients are stratified based on their disease subtype, risk, prognosis, or treatment response using specialized diagnostic tests. The key idea is to base medical decisions on individual patient characteristics, including molecular and behavioral biomarkers, rather than on population averages. Personalized medicine is deeply connected to and dependent on data science, specifically machine learning (often named Artificial Intelligence in the mainstream media). While during recent years there has been a lot of enthusiasm about the potential of ‘big data’ and machine learning-based solutions, there exist only few examples that impact current clinical practice. The lack of impact on clinical practice can largely be attributed to insufficient performance of predictive models, difficulties to interpret complex model predictions, and lack of validation via prospective clinical trials that demonstrate a clear benefit compared to the standard of care. In this paper, we review the potential of state-of-the-art data science approaches for personalized medicine, discuss open challenges, and highlight directions that may help to overcome them in the future. There is a need for an interdisciplinary effort, including data scientists, physicians, patient advocates, regulatory agencies, and health insurance organizations. Partially unrealistic expectations and concerns about data science-based solutions need to be better managed. In parallel, computational methods must advance more to provide direct benefit to clinical practice.

248 citations


Authors

Showing all 17388 results

NameH-indexPapersCitations
David Miller2032573204840
Hyun-Chul Kim1764076183227
James M. Tour14385991364
Carmen García139150396925
Bernt Schiele13056870032
Vladimir Cindro129115782000
Teresa Barillari12998478782
Sven Menke129112182034
Horst Oberlack12998580069
Hubert Kroha129112680746
Peter Schacht129103080092
Siegfried Bethke1291266103520
Igor Mandić128106579498
Stefan Kluth128126184534
Andrej Gorišek12895167830
Network Information
Related Institutions (5)
Ghent University
111K papers, 3.7M citations

91% related

National Research Council
76K papers, 2.4M citations

90% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

90% related

Royal Institute of Technology
68.4K papers, 1.9M citations

90% related

University of Padua
114.8K papers, 3.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202390
2022331
20213,149
20203,110
20192,780
20182,479