scispace - formally typeset
Search or ask a question
Institution

University of Ljubljana

EducationLjubljana, Slovenia
About: University of Ljubljana is a education organization based out in Ljubljana, Slovenia. It is known for research contribution in the topics: Population & Liquid crystal. The organization has 17210 authors who have published 47013 publications receiving 1082684 citations. The organization is also known as: Univerza v Ljubljani.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated how and where phase change materials (PCMs) are used in the cooling systems, how are these systems related to buildings, if they provide lower energy consumption, how the indoor temperatures change due to PCMs and if the indoor air conditions improve.

268 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +2827 moreInstitutions (148)
TL;DR: The Standard Model (SM) Higgs boson hypothesis is tested against several alternative spin scenarios, including non-SM spin-0 and spin-2 models with universal and non-universal couplings to fermions and vector bosons, and the observed distributions of variables sensitive to the non- SM tensor couplings are compatible with the SM predictions.
Abstract: Studies of the spin, parity and tensor couplings of the Higgs boson in the [Formula: see text], [Formula: see text] and [Formula: see text] decay processes at the LHC are presented. The investigations are based on [Formula: see text] of pp collision data collected by the ATLAS experiment at [Formula: see text] TeV and [Formula: see text] TeV. The Standard Model (SM) Higgs boson hypothesis, corresponding to the quantum numbers [Formula: see text], is tested against several alternative spin scenarios, including non-SM spin-0 and spin-2 models with universal and non-universal couplings to fermions and vector bosons. All tested alternative models are excluded in favour of the SM Higgs boson hypothesis at more than 99.9 % confidence level. Using the [Formula: see text] and [Formula: see text] decays, the tensor structure of the interaction between the spin-0 boson and the SM vector bosons is also investigated. The observed distributions of variables sensitive to the non-SM tensor couplings are compatible with the SM predictions and constraints on the non-SM couplings are derived.

268 citations

Journal ArticleDOI
TL;DR: A sequential finite element model of E distribution in tissue which considers local changes in tissue conductivity due to permeabilization and can predict the permeabilized volume of tissue, when exposed to electrical treatment.
Abstract: Permeabilization, when observed on a tissue level, is a dynamic process resulting from changes in membrane permeability when exposing biological cells to external electric field (E). In this paper we present a sequential finite element model of E distribution in tissue which considers local changes in tissue conductivity due to permeabilization. These changes affect the pattern of the field distribution during the high voltage pulse application. The presented model consists of a sequence of static models (steps), which describe E distribution at discrete time intervals during tissue permeabilization and in this way present the dynamics of electropermeabilization. The tissue conductivity for each static model in a sequence is determined based on E distribution from the previous step by considering a sigmoid dependency between specific conductivity and E intensity. Such a dependency was determined by parameter estimation on a set of current measurements, obtained by in vivo experiments. Another set of measurements was used for model validation. All experiments were performed on rabbit liver tissue with inserted needle electrodes. Model validation was carried out in four different ways: 1) by comparing reversibly permeabilized tissue computed by the model and the reversibly permeabilized area of tissue as obtained in the experiments; 2) by comparing the area of irreversibly permeabilized tissue computed by the model and the area where tissue necrosis was observed in experiments; 3) through the comparison of total current at the end of pulse and computed current in the last step of sequential electropermeabilization model; 4) by comparing total current during the first pulse and current computed in consecutive steps of a modeling sequence. The presented permeabilization model presents the first approach of describing the course of permeabilization on tissue level. Despite some approximations (ohmic tissue behavior) the model can predict the permeabilized volume of tissue, when exposed to electrical treatment. Therefore, the most important contribution and novelty of the model is its potentiality to be used as a tool for determining parameters for effective tissue permeabilization.

268 citations

Journal ArticleDOI
TL;DR: The AcerMC Monte Carlo generator is dedicated to the generation of Standard Model background processes which were recognised as critical for the searches at LHC, and generation of which was either unavailable or not straightforward so far.

268 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2916 moreInstitutions (196)
TL;DR: In this paper, a measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5 fb(-1) of proton-proton collisions data at root s = 7 TeV and 20.4 GeV.
Abstract: A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5 fb(-1) of proton-proton collisions data at root s = 7 TeV and 20.3 fb(-1) at root s = 8 TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be mu = 1.17 +/- 0.27 at the value of the Higgs boson mass measured by ATLAS, m(H) = 125.4 GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of m(H). They are found to be mu(ggF) = 1.32 +/- 0.38, mu(VBF) = 0.8 +/- 0.7, mu(WH) = 1.0 +/- 1.6, mu(ZH) = 0.1(-0.1)(+3.7), and mu t (t) over barH = 1.6(-1.8)(+2.7), for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a W or Z boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.

268 citations


Authors

Showing all 17388 results

NameH-indexPapersCitations
David Miller2032573204840
Hyun-Chul Kim1764076183227
James M. Tour14385991364
Carmen García139150396925
Bernt Schiele13056870032
Vladimir Cindro129115782000
Teresa Barillari12998478782
Sven Menke129112182034
Horst Oberlack12998580069
Hubert Kroha129112680746
Peter Schacht129103080092
Siegfried Bethke1291266103520
Igor Mandić128106579498
Stefan Kluth128126184534
Andrej Gorišek12895167830
Network Information
Related Institutions (5)
Ghent University
111K papers, 3.7M citations

91% related

National Research Council
76K papers, 2.4M citations

90% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

90% related

Royal Institute of Technology
68.4K papers, 1.9M citations

90% related

University of Padua
114.8K papers, 3.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202390
2022331
20213,149
20203,110
20192,780
20182,479