scispace - formally typeset
Search or ask a question
Institution

University of Ljubljana

EducationLjubljana, Slovenia
About: University of Ljubljana is a education organization based out in Ljubljana, Slovenia. It is known for research contribution in the topics: Population & Liquid crystal. The organization has 17210 authors who have published 47013 publications receiving 1082684 citations. The organization is also known as: Univerza v Ljubljani.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that greater TPJ and DMN deactivation during the encoding phase predicted better WM performance and the functional connectivity results suggest that TPJ, while not part of the DMN during the resting state, may flexibly "couple" with this network depending on task demands.

266 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah, A. A. Abdelalim3  +3002 moreInstitutions (178)
TL;DR: In this article, the authors describe the measurement of elliptic flow of charged particles in lead-lead collisions at root s(NN) = 2.76 TeV using the ATLAS detector at the Large Hadron Collider (LHC).

265 citations

Journal ArticleDOI
TL;DR: The results suggest that offline eLearning is equivalent and possibly superior to traditional learning regarding knowledge, skills, attitudes and satisfaction, and justify further investment into offline e learning to address the global health care workforce shortage.
Abstract: Background Health systems worldwide are facing shortages in health professional workforce. Several studies have demonstrated the direct correlation between the availability of health workers, coverage of health services, and population health outcomes. To address this shortage, online eLearning is increasingly being adopted in health professionals’ education. To inform policy–making, in online eLearning, we need to determine its effectiveness. Methods We performed a systematic review of the effectiveness of online eLearning through a comprehensive search of the major databases for randomised controlled trials that compared online eLearning to traditional learning or alternative learning methods. The search period was from January 2000 to August 2013. We included articles which primarily focused on students' knowledge, skills, satisfaction and attitudes toward eLearning and cost-effectiveness and adverse effects as secondary outcomes. Two reviewers independently extracted data from the included studies. Due to significant heterogeneity among the included studies, we presented our results as a narrative synthesis. Findings Fifty–nine studies, including 6750 students enrolled in medicine, dentistry, nursing, physical therapy and pharmacy studies, met the inclusion criteria. Twelve of the 50 studies testing knowledge gains found significantly higher gains in the online eLearning intervention groups compared to traditional learning, whereas 27 did not detect significant differences or found mixed results. Eleven studies did not test for differences. Six studies detected significantly higher skill gains in the online eLearning intervention groups, whilst 3 other studies testing skill gains did not detect differences between groups and 1 study showed mixed results. Twelve studies tested students' attitudes, of which 8 studies showed no differences in attitudes or preferences for online eLearning. Students' satisfaction was measured in 29 studies, 4 studies showed higher satisfaction for online eLearning and 20 studies showed no difference in satisfaction between online eLearning and traditional learning. Risk of bias was high for several of the included studies. Conclusion The current evidence base suggests that online eLearning is equivalent, possibly superior to traditional learning. These findings present a potential incentive for policy makers to cautiously encourage its adoption, while respecting the heterogeneity among the studies.

265 citations

Journal ArticleDOI
TL;DR: In this article, a new experimental technique is presented for making measurements of biaxial residual stress using load and depth sensing indentation (nanoindentation), which is based on spherical indentation and can be much more sensitive to residual stress than indentation with sharp pyramidal indenters like the Berkovich.
Abstract: A new experimental technique is presented for making measurements of biaxial residual stress using load and depth sensing indentation (nanoindentation). The technique is based on spherical indentation, which, in certain deformation regimes, can be much more sensitive to residual stress than indentation with sharp pyramidal indenters like the Berkovich. Two different methods of analysis were developed: one requiring an independent measure of the material's yield strength and the other a reference specimen in the unstressed state or other known reference condition. Experiments conducted on aluminum alloys to which controlled biaxial bending stresses were applied showed that the methods are capable of measuring the residual stress to within 10-20% of the specimen yield stress. Because the methods do not require imaging of the hardness impressions, they are potentially useful for making localized measurements of residual stress, as in thin films or small volumes, or for characterization of point-to-point spatial variations of the surface stress.

264 citations

Journal ArticleDOI
TL;DR: This work discusses how water’s orientation-dependent hydrogen bonding leads to open tetrahedral cage-like structuring that contributes to its remarkable volumetric and thermal properties.
Abstract: How are water’s material properties encoded within the structure of the water molecule? This is pertinent to understanding Earth’s living systems, its materials, its geochemistry and geophysics, and a broad spectrum of its industrial chemistry. Water has distinctive liquid and solid properties: It is highly cohesive. It has volumetric anomalies—water’s solid (ice) floats on its liquid; pressure can melt the solid rather than freezing the liquid; heating can shrink the liquid. It has more solid phases than other materials. Its supercooled liquid has divergent thermodynamic response functions. Its glassy state is neither fragile nor strong. Its component ions—hydroxide and protons—diffuse much faster than other ions. Aqueous solvation of ions or oils entails large entropies and heat capacities. We review how these properties are encoded within water’s molecular structure and energies, as understood from theories, simulations, and experiments. Like simpler liquids, water molecules are nearly spherical and in...

264 citations


Authors

Showing all 17388 results

NameH-indexPapersCitations
David Miller2032573204840
Hyun-Chul Kim1764076183227
James M. Tour14385991364
Carmen García139150396925
Bernt Schiele13056870032
Vladimir Cindro129115782000
Teresa Barillari12998478782
Sven Menke129112182034
Horst Oberlack12998580069
Hubert Kroha129112680746
Peter Schacht129103080092
Siegfried Bethke1291266103520
Igor Mandić128106579498
Stefan Kluth128126184534
Andrej Gorišek12895167830
Network Information
Related Institutions (5)
Ghent University
111K papers, 3.7M citations

91% related

National Research Council
76K papers, 2.4M citations

90% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

90% related

Royal Institute of Technology
68.4K papers, 1.9M citations

90% related

University of Padua
114.8K papers, 3.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202390
2022331
20213,149
20203,110
20192,780
20182,479