scispace - formally typeset
Search or ask a question
Institution

University of London

EducationLondon, United Kingdom
About: University of London is a education organization based out in London, United Kingdom. It is known for research contribution in the topics: Population & Public health. The organization has 44838 authors who have published 88086 publications receiving 4002499 citations. The organization is also known as: London University & Lond..


Papers
More filters
Journal ArticleDOI
Christopher J L Murray1, Theo Vos2, Rafael Lozano1, Mohsen Naghavi1  +366 moreInstitutions (141)
TL;DR: The results for 1990 and 2010 supersede all previously published Global Burden of Disease results and highlight the importance of understanding local burden of disease and setting goals and targets for the post-2015 agenda taking such patterns into account.

6,861 citations

Journal ArticleDOI
TL;DR: It is shown that it is feasible to develop a checklist that can be used to assess the methodological quality not only of randomised controlled trials but also non-randomised studies and it is possible to produce a Checklist that provides a profile of the paper, alerting reviewers to its particular methodological strengths and weaknesses.
Abstract: OBJECTIVE: To test the feasibility of creating a valid and reliable checklist with the following features: appropriate for assessing both randomised and non-randomised studies; provision of both an overall score for study quality and a profile of scores not only for the quality of reporting, internal validity (bias and confounding) and power, but also for external validity. DESIGN: A pilot version was first developed, based on epidemiological principles, reviews, and existing checklists for randomised studies. Face and content validity were assessed by three experienced reviewers and reliability was determined using two raters assessing 10 randomised and 10 non-randomised studies. Using different raters, the checklist was revised and tested for internal consistency (Kuder-Richardson 20), test-retest and inter-rater reliability (Spearman correlation coefficient and sign rank test; kappa statistics), criterion validity, and respondent burden. MAIN RESULTS: The performance of the checklist improved considerably after revision of a pilot version. The Quality Index had high internal consistency (KR-20: 0.89) as did the subscales apart from external validity (KR-20: 0.54). Test-retest (r 0.88) and inter-rater (r 0.75) reliability of the Quality Index were good. Reliability of the subscales varied from good (bias) to poor (external validity). The Quality Index correlated highly with an existing, established instrument for assessing randomised studies (r 0.90). There was little difference between its performance with non-randomised and with randomised studies. Raters took about 20 minutes to assess each paper (range 10 to 45 minutes). CONCLUSIONS: This study has shown that it is feasible to develop a checklist that can be used to assess the methodological quality not only of randomised controlled trials but also non-randomised studies. It has also shown that it is possible to produce a checklist that provides a profile of the paper, alerting reviewers to its particular methodological strengths and weaknesses. Further work is required to improve the checklist and the training of raters in the assessment of external validity.

6,849 citations

Journal ArticleDOI
Stephan Ripke1, Stephan Ripke2, Benjamin M. Neale1, Benjamin M. Neale2  +351 moreInstitutions (102)
24 Jul 2014-Nature
TL;DR: Associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses.
Abstract: Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.

6,809 citations

Journal ArticleDOI
24 Jun 1982-Nature
TL;DR: It is reported that, in addition to a spatial discrimination impairment, total hippocampal lesions also cause a profound and lasting placenavigational impairment that can be dissociated from correlated motor, motivational and reinforcement aspects of the procedure.
Abstract: Electrophysiological studies have shown that single cells in the hippocampus respond during spatial learning and exploration1–4, some firing only when animals enter specific and restricted areas of a familiar environment. Deficits in spatial learning and memory are found after lesions of the hippocampus and its extrinsic fibre connections5,6 following damage to the medial septal nucleus which successfully disrupts the hippocampal theta rhythm7, and in senescent rats which also show a correlated reduction in synaptic enhancement on the perforant path input to the hippocampus8. We now report, using a novel behavioural procedure requiring search for a hidden goal, that, in addition to a spatial discrimination impairment, total hippocampal lesions also cause a profound and lasting placenavigational impairment that can be dissociated from correlated motor, motivational and reinforcement aspects of the procedure.

6,143 citations

Journal ArticleDOI
24 Mar 2010-BMJ
TL;DR: This update of the CONSORT statement improves the wording and clarity of the previous checklist and incorporates recommendations related to topics that have only recently received recognition, such as selective outcome reporting bias.
Abstract: Overwhelming evidence shows the quality of reporting of randomised controlled trials (RCTs) is not optimal. Without transparent reporting, readers cannot judge the reliability and validity of trial findings nor extract information for systematic reviews. Recent methodological analyses indicate that inadequate reporting and design are associated with biased estimates of treatment effects. Such systematic error is seriously damaging to RCTs, which are considered the gold standard for evaluating interventions because of their ability to minimise or avoid bias. A group of scientists and editors developed the CONSORT (Consolidated Standards of Reporting Trials) statement to improve the quality of reporting of RCTs. It was first published in 1996 and updated in 2001. The statement consists of a checklist and flow diagram that authors can use for reporting an RCT. Many leading medical journals and major international editorial groups have endorsed the CONSORT statement. The statement facilitates critical appraisal and interpretation of RCTs. During the 2001 CONSORT revision, it became clear that explanation and elaboration of the principles underlying the CONSORT statement would help investigators and others to write or appraise trial reports. A CONSORT explanation and elaboration article was published in 2001 alongside the 2001 version of the CONSORT statement. After an expert meeting in January 2007, the CONSORT statement has been further revised and is published as the CONSORT 2010 Statement. This update improves the wording and clarity of the previous checklist and incorporates recommendations related to topics that have only recently received recognition, such as selective outcome reporting bias. This explanatory and elaboration document-intended to enhance the use, understanding, and dissemination of the CONSORT statement-has also been extensively revised. It presents the meaning and rationale for each new and updated checklist item providing examples of good reporting and, where possible, references to relevant empirical studies. Several examples of flow diagrams are included. The CONSORT 2010 Statement, this revised explanatory and elaboration document, and the associated website (www.consort-statement.org) should be helpful resources to improve reporting of randomised trials.

5,957 citations


Authors

Showing all 44949 results

NameH-indexPapersCitations
George Davey Smith2242540248373
Karl J. Friston2171267217169
Nicholas J. Wareham2121657204896
David Miller2032573204840
Raymond J. Dolan196919138540
Peter J. Barnes1941530166618
Michael Marmot1931147170338
Michael Rutter188676151592
Terrie E. Moffitt182594150609
Tony Hunter175593124726
Chris D. Frith173524130472
David Baker1731226109377
Barry Halliwell173662159518
Didier Raoult1733267153016
Feng Zhang1721278181865
Network Information
Related Institutions (5)
University College London
210.6K papers, 9.8M citations

91% related

University of Edinburgh
151.6K papers, 6.6M citations

90% related

University of Oxford
258.1K papers, 12.9M citations

90% related

University of Manchester
168K papers, 6.4M citations

90% related

Imperial College London
209.1K papers, 9.3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202341
2022240
20214,776
20204,347
20193,581
20183,263