scispace - formally typeset
Search or ask a question
Institution

University of Lorraine

EducationNancy, France
About: University of Lorraine is a education organization based out in Nancy, France. It is known for research contribution in the topics: Population & Nonlinear system. The organization has 11942 authors who have published 25010 publications receiving 425227 citations. The organization is also known as: Lorraine University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new class of transparent epoxy-based nanocomposite coatings containing starch-modified nano-zinc oxide (ZnO-St) is presented.

96 citations

Journal ArticleDOI
TL;DR: These multidisciplinary recommendations for pathology classification and application will allow more informative pathologic reporting and potential risk stratification, to support clinical practice, research investigation and clinical trials.

96 citations

Journal ArticleDOI
TL;DR: In this paper, an analytical upper bound on operator entanglement for all local operators in the Rule 54 qubit chain, a cellular automaton model introduced in the 1990s, was provided.
Abstract: In a many-body quantum system, local operators in the Heisenberg picture O(t)=e^{iHt}Oe^{-iHt} spread as time increases. Recent studies have attempted to find features of that spreading which could distinguish between chaotic and integrable dynamics. The operator entanglement-the entanglement entropy in operator space-is a natural candidate to provide such a distinction. Indeed, while it is believed that the operator entanglement grows linearly with time t in chaotic systems, we present evidence that it grows only logarithmically in generic interacting integrable systems. Although this logarithmic growth has been previously established for noninteracting fermions, there has been no progress on interacting integrable systems to date. In this Letter we provide an analytical upper bound on operator entanglement for all local operators in the "Rule 54" qubit chain, a cellular automaton model introduced in the 1990s [Bobenko et al., CMP 158, 127 (1993)CMPHAY0010-361610.1007/BF02097234], and recently advertised as the simplest representative of interacting integrable systems. Physically, the logarithmic bound originates from the fact that the dynamics of the models is mapped onto the one of stable quasiparticles that scatter elastically. The possibility of generalizing this scenario to other interacting integrable systems is briefly discussed.

96 citations

Journal ArticleDOI
TL;DR: In this article, the challenges assessed and current trends elucidated in the very active area of Chemical Engineering bordering with material science and electrochemistry are reviewed, as well as some of these applications are reviewed.
Abstract: Over the last century, electrochemical engineering has contributed significantly to societal progress by enabling development of industrial processes for manufacturing chemicals, such as chlorine and the Nylon precursor adiponitrile, as well as a wide range of metals including aluminium and zinc. In 2011, ca. 17 M tonne Cu p.a. was electro-refined to 99.99%+ purity required by electrical and electronic engineering applications, such as for electrodepositing with exquisite resolution multi-layer inter-connections in microprocessors. Surface engineering is widely practised industrially e.g. to protect steels against corrosion e.g. by electroplating nickel or using more recent novel self-healing coatings. Complex shapes of hard alloys that are difficult to machine can be fabricated by selective dissolution in electrochemical machining processes. Electric fields can be used to drive desalination of brackish water for urban supplies and irrigation by electrodialysis with ion-permeable membranes; such fields can also be used in electrokinetic soil remediation processes. Rising concerns about the consequences of CO2 emissions has led to the rapidly increasing development and deployment of renewable energy systems, the intermittency of which can be mitigated by energy storage in e.g. redox flow batteries for stationary storage and novel lithium batteries with increased specific energies for powering electric vehicles, or when economically viable, in electrolyser-fuel cells. The interface between electrochemical technology and biotechnology is also developing rapidly, with applications such as microbial fuel cells. Some of these applications are reviewed, the challenges assessed and current trends elucidated in the very active area of Chemical Engineering bordering with material science and electrochemistry.

96 citations

Journal ArticleDOI
TL;DR: The role of triggering receptor expressed on myeloid cells-1(TREM-1) in orchestrating the inflammatory response that follows MI is examined and data suggest that TREM- 1 could constitute a new therapeutic target during acute MI.
Abstract: Rationale: Optimal outcome after myocardial infarction (MI) depends on a coordinated healing response in which both debris removal and repair of the myocardial extracellular matrix play a major role. However, adverse remodeling and excessive inflammation can promote heart failure, positioning leucocytes as central protagonists and potential therapeutic targets in tissue repair and wound healing after MI. Objective: In this study, we examined the role of triggering receptor expressed on myeloid cells-1(TREM-1) in orchestrating the inflammatory response that follows MI. TREM-1, expressed by neutrophils and mature monocytes, is an amplifier of the innate immune response. Methods and Results: After infarction, TREM-1 expression is upregulated in ischemic myocardium in mice and humans. Trem-1 genetic invalidation or pharmacological inhibition using a synthetic peptide (LR12) dampens myocardial inflammation, limits neutrophils recruitment and monocyte chemoattractant protein-1 production, thus reducing classical monocytes mobilization to the heart. It also improves left ventricular function and survival in mice (n=20–22 per group). During both permanent and transient myocardial ischemia, Trem-1 blockade also ameliorates cardiac function and limits ventricular remodeling as assessed by fluorodeoxyglucose-positron emission tomographic imaging and conductance catheter studies (n=9–18 per group). The soluble form of TREM-1 (sTREM-1), a marker of TREM-1 activation, is detectable in the plasma of patients having an acute MI (n=1015), and its concentration is an independent predictor of death. Conclusions: These data suggest that TREM-1 could constitute a new therapeutic target during acute MI.

96 citations


Authors

Showing all 12161 results

NameH-indexPapersCitations
Jonathan I. Epstein138112180975
Peter Tugwell129948125480
David Brown105125746827
Faiez Zannad10383990737
Sabu Thomas102155451366
Francis Martin9873343991
João F. Mano9782236401
Jonathan A. Epstein9429927492
Muhammad Imran94305351728
Laurent Peyrin-Biroulet9090134120
Athanase Benetos8339131718
Michel Marre8244439052
Bruno Rossion8033721902
Lyn March7836762536
Alan J. M. Baker7623426080
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

95% related

École Normale Supérieure
99.4K papers, 3M citations

94% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

National Research Council
76K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202375
2022477
20213,153
20202,987
20192,799
20182,593