scispace - formally typeset
Search or ask a question
Institution

University of Lorraine

EducationNancy, France
About: University of Lorraine is a education organization based out in Nancy, France. It is known for research contribution in the topics: Population & Context (language use). The organization has 11942 authors who have published 25010 publications receiving 425227 citations. The organization is also known as: Lorraine University.


Papers
More filters
Journal ArticleDOI
31 May 2013-PLOS ONE
TL;DR: Assessing the allocation of carbon by the host to Tuber melanosporum mycorrhizas and ascocarps suggests that carbon allocated to the ascocarp during winter was provided by reserve compounds stored in the wood and hydrolyzed during a period of frost.
Abstract: Truffles ascocarps need carbon to grow, but it is not known whether this carbon comes directly from the tree (heterotrophy) or from soil organic matter (saprotrophy). The objective of this work was to investigate the heterotrophic side of the ascocarp nutrition by assessing the allocation of carbon by the host to Tuber melanosporum mycorrhizas and ascocarps. In 2010, a single hazel tree selected for its high truffle (Tuber melanosporum) production and situated in the west part of the Vosges, France, was labeled with 13CO2. The transfer of 13C from the leaves to the fine roots and T. melanosporum mycorrhizas was very slow compared with the results found in the literature for herbaceous plants or other tree species. The fine roots primarily acted as a carbon conduit; they accumulated little 13C and transferred it slowly to the mycorrhizas. The mycorrhizas first formed a carbon sink and accumulated 13C prior to ascocarp development. Then, the mycorrhizas transferred 13C to the ascocarps to provide constitutive carbon (1.7 mg of 13C per day). The ascocarps accumulated host carbon until reaching complete maturity, 200 days after the first labeling and 150 days after the second labeling event. This role of the Tuber ascocarps as a carbon sink occurred several months after the end of carbon assimilation by the host and at low temperature. This finding suggests that carbon allocated to the ascocarps during winter was provided by reserve compounds stored in the wood and hydrolyzed during a period of frost. Almost all of the constitutive carbon allocated to the truffles (1% of the total carbon assimilated by the tree during the growing season) came from the host.

86 citations

Journal ArticleDOI
TL;DR: Ab initio calculations reveal that hydrogen bonds can lock phosphates into stable gas-phase complexes, showing that hydrogen bonding can overcome anion-anion repulsion.
Abstract: Stronger than you'd think: Ab initio calculations reveal that hydrogen bonds can lock phosphates into stable gas-phase complexes, showing that hydrogen bonding can overcome anion-anion repulsion. These complexes present a large energetic barrier of dissociation. The stability of the complexes can be explained in terms of the electrostatic interaction in the hydrogen-bond region.

86 citations

Journal ArticleDOI
01 Oct 2019-Geology
TL;DR: In this paper, the authors present the first almost complete Paleogene silicate weathering intensity (SWI) records from continental rocks in the northern Tibetan Plateau showing that silicates weathering in this tectonically inactive area was modulated by global temperature.
Abstract: Plate-tectonic processes have long been thought to be the major cause of the Cenozoic global carbon cycle, and global cooling by uplift of the Tibetan Plateau through enhancing silicate weathering and organic carbon burial and/or by weathering of obducted ophiolites during the closure of the Neo-Tethys Ocean. However, the imbalance resulting from accelerated CO2 consumption and a relatively stable CO2 input from volcanic degassing during the Cenozoic should have depleted atmospheric CO2 within a few million years; therefore, a negative feedback mechanism must have stabilized the carbon cycle. Here, we present the first almost-complete Paleogene silicate weathering intensity (SWI) records from continental rocks in the northern Tibetan Plateau showing that silicate weathering in this tectonically inactive area was modulated by global temperature. These findings suggest that Paleogene global cooling was also strongly influenced by a temperature feedback mechanism, which regulated silicate weathering rates and hydrological cycles and maintained a nearly stable carbon cycle. It acted as a negative feedback by decreasing CO2 consumption resulting from the lower SWI and the kinetic limitations in tectonically inactive areas.

85 citations

Journal ArticleDOI
TL;DR: The present in‐vivo conductivity values could serve to create more accurate volume conduction models and could help to refine the identification of relevant intracerebral contacts, especially when located within the epileptogenic zone of an MRI‐invisible lesion.
Abstract: In-vivo measurements of human brain tissue conductivity at body temperature were conducted using focal electrical currents injected through intracerebral multicontact electrodes. A total of 1,421 measurements in 15 epileptic patients (age: 28 ± 10) using a radiofrequency generator (50 kHz current injection) were analyzed. Each contact pair was classified as being from healthy (gray matter, n = 696; white matter, n = 530) or pathological (epileptogenic zone, n = 195) tissue using neuroimaging analysis of the local tissue environment and intracerebral EEG recordings. Brain tissue conductivities were obtained using numerical simulations based on conductivity estimates that accounted for the current flow in the local brain volume around the contact pairs (a cube with a side length of 13 mm). Conductivity values were 0.26 S/m for gray matter and 0.17 S/m for white matter. Healthy gray and white matter had statistically different median impedances (P < 0.0001). White matter conductivity was found to be homogeneous as normality tests did not find evidence of multiple subgroups. Gray matter had lower conductivity in healthy tissue than in the epileptogenic zone (0.26 vs. 0.29 S/m; P = 0.012), even when the epileptogenic zone was not visible in the magnetic resonance image (MRI) (P = 0.005). The present in-vivo conductivity values could serve to create more accurate volume conduction models and could help to refine the identification of relevant intracerebral contacts, especially when located within the epileptogenic zone of an MRI-invisible lesion.

85 citations

Journal ArticleDOI
TL;DR: A review of surface characterization of food powders can be found in this paper, where the authors present recent and innovating methodologies used to characterize the surface and form of various foods.

85 citations


Authors

Showing all 12161 results

NameH-indexPapersCitations
Jonathan I. Epstein138112180975
Peter Tugwell129948125480
David Brown105125746827
Faiez Zannad10383990737
Sabu Thomas102155451366
Francis Martin9873343991
João F. Mano9782236401
Jonathan A. Epstein9429927492
Muhammad Imran94305351728
Laurent Peyrin-Biroulet9090134120
Athanase Benetos8339131718
Michel Marre8244439052
Bruno Rossion8033721902
Lyn March7836762536
Alan J. M. Baker7623426080
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

95% related

École Normale Supérieure
99.4K papers, 3M citations

94% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

National Research Council
76K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202375
2022478
20213,153
20202,987
20192,799
20182,593