scispace - formally typeset
Search or ask a question
Institution

University of Lorraine

EducationNancy, France
About: University of Lorraine is a education organization based out in Nancy, France. It is known for research contribution in the topics: Population & Nonlinear system. The organization has 11942 authors who have published 25010 publications receiving 425227 citations. The organization is also known as: Lorraine University.


Papers
More filters
Journal ArticleDOI
TL;DR: The measurements, performed on weakly interacting atomic clouds that lie at the crossover between the quasicondensate and the ideal Bose gas regimes, are in very good agreement with the theory, and contrasts with the previously existing "conventional" hydrodynamic approach.
Abstract: The emergence of a special type of fluidlike behavior at large scales in one-dimensional (1D) quantum integrable systems, theoretically predicted in O. A. Castro-Alvaredo et al., Emergent Hydrodynamics in Integrable Quantum Systems Out of Equilibrium, Phys. Rev. X 6, 041065 (2016)10.1103/PhysRevX.6.041065 and B. Bertini et al., Transport in Out-of-Equilibrium XXZ Chains: Exact Profiles of Charges and Currents, Phys. Rev. Lett. 117, 207201 (2016)10.1103/PhysRevLett.117.207201, is established experimentally, by monitoring the time evolution of the in situ density profile of a single 1D cloud of ^{87}Rb atoms trapped on an atom chip after a quench of the longitudinal trapping potential. The theory can be viewed as a dynamical extension of the thermodynamics of Yang and Yang, and applies to the whole range of repulsive interaction strength and temperature of the gas. The measurements, performed on weakly interacting atomic clouds that lie at the crossover between the quasicondensate and the ideal Bose gas regimes, are in very good agreement with the theory. This contrasts with the previously existing "conventional" hydrodynamic approach-that relies on the assumption of local thermal equilibrium-which is unable to reproduce the experimental data.

237 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that increasing the degree of interlocking between the discrete elements which represent the rock medium, in addition to enhancing the UCS/TS ratio, results in a non-linear failure envelop characteristic of low porous rocks.
Abstract: The Discrete Element Method (DEM) is increasingly used to simulate the behavior of rock. Despite their intrinsic capability to model fracture initiation and propagation starting from simple interaction laws, classical DEM formulations using spherical discrete elements suffer from an intrinsic limitation to properly simulate brittle rock behavior characterized by high values of UCS/TS ratio associated with non-linear failure envelopes, as observed for hard rock like granite. The present paper shows that the increase of the interaction range between the spherical discrete elements, which increases locally the density of interaction forces (or interparticle bonds), can overcome this limitation. It is argued that this solution represents a way to implicitly take into account the degree of interlocking associated to the microstructural complexity of rock. It is thus shown that increasing the degree of interlocking between the discrete elements which represent the rock medium, in addition to enhancing the UCS/TS ratio, results in a non-linear failure envelop characteristic of low porous rocks. This approach improves significantly the potential and predictive capabilities of the DEM for rock modeling purpose. A special emphasis is put on the model ability to capture the fundamental characteristics of brittle rocks in terms of fracture initiation and propagation. The model can reproduce an essential component of brittle rock failure, that is, cohesion weakening and frictional strengthening as a function of rock damage or plastic strain. Based on model predictions, it is finally discussed that frictional strengthening may be at the origin of the brittle ductile transition occurring at high confining pressures.

235 citations

Journal ArticleDOI
TL;DR: Both dulaglutide doses demonstrated superior glycemic control versus sitagliptin at 52 weeks with an acceptable tolerability and safety profile.
Abstract: OBJECTIVE To compare the efficacy and safety of two doses of once-weekly dulaglutide, a glucagon-like peptide 1 receptor agonist, to sitagliptin in uncontrolled, metformin-treated patients with type 2 diabetes. The primary objective was to compare (for noninferiority and then superiority) dulaglutide 1.5 mg versus sitagliptin in change from baseline in glycosylated hemoglobin A1c (HbA1c) at 52 weeks. RESEARCH DESIGN AND METHODS This multicenter, adaptive, double-blind, parallel-arm study randomized patients ( N = 1,098; mean baseline age 54 years; HbA1c 8.1% [65 mmol/mol]; weight 86.4 kg; diabetes duration 7 years) to dulaglutide 1.5 mg, dulaglutide 0.75 mg, sitagliptin 100 mg, or placebo (placebo-controlled period up to 26 weeks). The treatment period lasted 104 weeks, with 52-week primary end point data presented. RESULTS The mean HbA1c changes to 52 weeks were (least squares mean ± SE): −1.10 ± 0.06% (−12.0 ± 0.7 mmol/mol), −0.87 ± 0.06% (9.5 ± 0.7 mmol/mol), and −0.39 ± 0.06% (4.3 ± 0.7 mmol/mol) for dulaglutide 1.5 mg, dulaglutide 0.75 mg, and sitagliptin, respectively. Both dulaglutide doses were superior to sitagliptin ( P < 0.001, both comparisons). No events of severe hypoglycemia were reported. Mean weight changes to 52 weeks were greater with dulaglutide 1.5 mg (−3.03 ± 0.22 kg) and dulaglutide 0.75 mg (−2.60 ± 0.23 kg) compared with sitagliptin (−1.53 ± 0.22 kg) ( P < 0.001, both comparisons). The most common gastrointestinal treatment-emergent adverse events in dulaglutide 1.5- and 0.75-mg arms were nausea, diarrhea, and vomiting. CONCLUSIONS Both dulaglutide doses demonstrated superior glycemic control versus sitagliptin at 52 weeks with an acceptable tolerability and safety profile.

233 citations

Journal ArticleDOI
TL;DR: In this paper, a variety of different methods have been devised to classify the cosmic web, depending on the data at hand, be it numerical simulations, large sky surveys or other.
Abstract: The cosmic web is one of the most striking features of the distribution of galaxies and dark matter on the largest scales in the Universe. It is composed of dense regions packed full of galaxies, long filamentary bridges, flattened sheets and vast low-density voids. The study of the cosmic web has focused primarily on the identification of such features, and on understanding the environmental effects on galaxy formation and halo assembly. As such, a variety of different methods have been devised to classify the cosmic web – depending on the data at hand, be it numerical simulations, large sky surveys or other. In this paper, we bring 12 of these methods together and apply them to the same data set in order to understand how they compare. In general, these cosmic-web classifiers have been designed with different cosmological goals in mind, and to study different questions. Therefore, one would not a priori expect agreement between different techniques; however, many of these methods do converge on the identification of specific features. In this paper, we study the agreements and disparities of the different methods. For example, each method finds that knots inhabit higher density regions than filaments, etc. and that voids have the lowest densities. For a given web environment, we find a substantial overlap in the density range assigned by each web classification scheme. We also compare classifications on a halo-by-halo basis; for example, we find that 9 of 12 methods classify around a third of group-mass haloes (i.e. Mhalo ∼ 1013.5 h−1 M⊙) as being in filaments. Lastly, so that any future cosmic-web classification scheme can be compared to the 12 methods used here, we have made all the data used in this paper public.

232 citations


Authors

Showing all 12161 results

NameH-indexPapersCitations
Jonathan I. Epstein138112180975
Peter Tugwell129948125480
David Brown105125746827
Faiez Zannad10383990737
Sabu Thomas102155451366
Francis Martin9873343991
João F. Mano9782236401
Jonathan A. Epstein9429927492
Muhammad Imran94305351728
Laurent Peyrin-Biroulet9090134120
Athanase Benetos8339131718
Michel Marre8244439052
Bruno Rossion8033721902
Lyn March7836762536
Alan J. M. Baker7623426080
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

95% related

École Normale Supérieure
99.4K papers, 3M citations

94% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

National Research Council
76K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202375
2022477
20213,153
20202,987
20192,799
20182,593