scispace - formally typeset
Search or ask a question

Showing papers by "University of Los Andes published in 2014"


Book ChapterDOI
06 Sep 2014
TL;DR: In this paper, a new geocentric embedding for depth images that encodes height above ground and angle with gravity for each pixel in addition to the horizontal disparity is proposed.
Abstract: In this paper we study the problem of object detection for RGB-D images using semantically rich image and depth features. We propose a new geocentric embedding for depth images that encodes height above ground and angle with gravity for each pixel in addition to the horizontal disparity. We demonstrate that this geocentric embedding works better than using raw depth images for learning feature representations with convolutional neural networks. Our final object detection system achieves an average precision of 37.3%, which is a 56% relative improvement over existing methods. We then focus on the task of instance segmentation where we label pixels belonging to object instances found by our detector. For this task, we propose a decision forest approach that classifies pixels in the detection window as foreground or background using a family of unary and binary tests that query shape and geocentric pose features. Finally, we use the output from our object detectors in an existing superpixel classification framework for semantic scene segmentation and achieve a 24% relative improvement over current state-of-the-art for the object categories that we study. We believe advances such as those represented in this paper will facilitate the use of perception in fields like robotics.

1,414 citations


Book ChapterDOI
06 Sep 2014
TL;DR: This work builds on recent work that uses convolutional neural networks to classify category-independent region proposals (R-CNN), introducing a novel architecture tailored for SDS, and uses category-specific, top-down figure-ground predictions to refine the bottom-up proposals.
Abstract: We aim to detect all instances of a category in an image and, for each instance, mark the pixels that belong to it. We call this task Simultaneous Detection and Segmentation (SDS). Unlike classical bounding box detection, SDS requires a segmentation and not just a box. Unlike classical semantic segmentation, we require individual object instances. We build on recent work that uses convolutional neural networks to classify category-independent region proposals (R-CNN [16]), introducing a novel architecture tailored for SDS. We then use category-specific, top-down figure-ground predictions to refine our bottom-up proposals. We show a 7 point boost (16% relative) over our baselines on SDS, a 5 point boost (10% relative) over state-of-the-art on semantic segmentation, and state-of-the-art performance in object detection. Finally, we provide diagnostic tools that unpack performance and provide directions for future work.

1,276 citations


Posted Content
TL;DR: Using hypercolumns as pixel descriptors, this work defines the hypercolumn at a pixel as the vector of activations of all CNN units above that pixel, and shows results on three fine-grained localization tasks: simultaneous detection and segmentation, and keypoint localization.
Abstract: Recognition algorithms based on convolutional networks (CNNs) typically use the output of the last layer as feature representation. However, the information in this layer may be too coarse to allow precise localization. On the contrary, earlier layers may be precise in localization but will not capture semantics. To get the best of both worlds, we define the hypercolumn at a pixel as the vector of activations of all CNN units above that pixel. Using hypercolumns as pixel descriptors, we show results on three fine-grained localization tasks: simultaneous detection and segmentation[22], where we improve state-of-the-art from 49.7[22] mean AP^r to 60.0, keypoint localization, where we get a 3.3 point boost over[20] and part labeling, where we show a 6.6 point gain over a strong baseline.

1,090 citations


Posted Content
TL;DR: A new geocentric embedding is proposed for depth images that encodes height above ground and angle with gravity for each pixel in addition to the horizontal disparity to facilitate the use of perception in fields like robotics.
Abstract: In this paper we study the problem of object detection for RGB-D images using semantically rich image and depth features. We propose a new geocentric embedding for depth images that encodes height above ground and angle with gravity for each pixel in addition to the horizontal disparity. We demonstrate that this geocentric embedding works better than using raw depth images for learning feature representations with convolutional neural networks. Our final object detection system achieves an average precision of 37.3%, which is a 56% relative improvement over existing methods. We then focus on the task of instance segmentation where we label pixels belonging to object instances found by our detector. For this task, we propose a decision forest approach that classifies pixels in the detection window as foreground or background using a family of unary and binary tests that query shape and geocentric pose features. Finally, we use the output from our object detectors in an existing superpixel classification framework for semantic scene segmentation and achieve a 24% relative improvement over current state-of-the-art for the object categories that we study. We believe advances such as those represented in this paper will facilitate the use of perception in fields like robotics.

1,059 citations


Journal ArticleDOI
S. Chatrchyan, Khachatryan1, Albert M. Sirunyan, Armen Tumasyan  +2384 moreInstitutions (207)
26 May 2014
TL;DR: In this paper, a description of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices is provided.
Abstract: A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tt events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p_T > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p_T = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in p_T, and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung.

559 citations


Journal ArticleDOI
TL;DR: The results suggest that neural activity in vivo shows a mélange of avalanches, and not temporally separated ones, and that their global activity propagation can be approximated by the principle that one spike on average triggers a little less than one spike in the next step.
Abstract: In self-organized critical (SOC) systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking. Therefore we analyzed highly parallel spike recordings from awake rats and monkeys, anaesthetized cats, and also local field potentials from humans. We compared these to spiking activity from two established critical models: the Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental differences between the neural and the model activity. These differences could be overcome for both models through a combination of three modifications: (1) subsampling, (2) increasing the input to the model (this way eliminating the separation of time scales, which is fundamental to SOC and its avalanche definition), and (3) making the model slightly sub-critical. The match between the neural activity and the modified models held not only for the classical avalanche size distributions and estimated branching parameters, but also for two novel measures (mean avalanche size, and frequency of single spikes), and for the dependence of all these measures on the temporal bin size. Our results suggest that neural activity in vivo shows a melange of avalanches, and not temporally separated ones, and that their global activity propagation can be approximated by the principle that one spike on average triggers a little less than one spike in the next step. This implies that neural activity does not reflect a SOC state but a slightly sub-critical regime without a separation of time scales. Potential advantages of this regime may be faster information processing, and a safety margin from super-criticality, which has been linked to epilepsy.

552 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented the results of a project with the European Research Council and EPLANET (European Union) with the objective of supporting the development of a research network in the field of nuclear energy.
Abstract: Austrian Federal Ministry of Science and Research and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent Financing Contract No. SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules/CNRS and Commissariat a l’Energie Atomique et aux Energies Alternatives/CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna, the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey and the Turkish Atomic Energy Authority; the Science and Technology Facilities Council, United Kingdom; the U.S. Department of Energy and the U.S. National Science Foundation.Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF.

512 citations


Journal ArticleDOI
TL;DR: In this paper, the diphoton decay mode of the recently discovered Higgs boson and measurement of some of its properties are reported using the entire dataset collected by the CMS experiment in proton-proton collisions during the 2011 and 2012 LHC running periods.
Abstract: Observation of the diphoton decay mode of the recently discovered Higgs boson and measurement of some of its properties are reported. The analysis uses the entire dataset collected by the CMS experiment in proton-proton collisions during the 2011 and 2012 LHC running periods. The data samples correspond to integrated luminosities of 5.1 inverse femtobarns at sqrt(s) = 7 TeV and 19.7 inverse femtobarns at 8 TeV. A clear signal is observed in the diphoton channel at a mass close to 125 GeV with a local significance of 5.7 sigma, where a significance of 5.2 sigma is expected for the standard model Higgs boson. The mass is measured to be 124.70 +/- 0.34 GeV = 124.70 +/- 0.31 (stat) +/- 0.15 (syst) GeV, and the best-fit signal strength relative to the standard model prediction is 1.14 +0.26/-0.23 = 1.14 +/- 0.21 (stat) +0.09/-0.05 (syst) +0.13/-0.09 (theo). Additional measurements include the signal strength modifiers associated with different production mechanisms, and hypothesis tests between spin-0 and spin-2 models.

486 citations


Journal ArticleDOI
20 Nov 2014-Nature
TL;DR: It is shown that spatial and temporal patterns of genetic differentiation in Neotropical birds are highly discordant across lineages and are not reconcilable with a model linking speciation solely to landscape change, and the strongest predictors of speciation are the amount of time a lineage has persisted in the landscape and the ability of birds to move through the landscape matrix.
Abstract: Since the recognition that allopatric speciation can be induced by large-scale reconfigurations of the landscape that isolate formerly continuous populations, such as the separation of continents by plate tectonics, the uplift of mountains or the formation of large rivers, landscape change has been viewed as a primary driver of biological diversification. This process is referred to in biogeography as vicariance. In the most species-rich region of the world, the Neotropics, the sundering of populations associated with the Andean uplift is ascribed this principal role in speciation. An alternative model posits that rather than being directly linked to landscape change, allopatric speciation is initiated to a greater extent by dispersal events, with the principal drivers of speciation being organism-specific abilities to persist and disperse in the landscape. Landscape change is not a necessity for speciation in this model. Here we show that spatial and temporal patterns of genetic differentiation in Neotropical birds are highly discordant across lineages and are not reconcilable with a model linking speciation solely to landscape change. Instead, the strongest predictors of speciation are the amount of time a lineage has persisted in the landscape and the ability of birds to move through the landscape matrix. These results, augmented by the observation that most species-level diversity originated after episodes of major Andean uplift in the Neogene period, suggest that dispersal and differentiation on a matrix previously shaped by large-scale landscape events was a major driver of avian speciation in lowland Neotropical rainforests.

457 citations


Proceedings Article
S. Chatrchyan1, Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1  +2179 moreInstitutions (201)
30 Jul 2014

409 citations


Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam  +2121 moreInstitutions (139)
TL;DR: In this paper, searches for the direct electroweak production of supersymmetric charginos, neutralinos, and sleptons in a variety of signatures with leptons and W, Z, and Higgs bosons are presented.
Abstract: Searches for the direct electroweak production of supersymmetric charginos, neutralinos, and sleptons in a variety of signatures with leptons and W, Z, and Higgs bosons are presented. Results are based on a sample of proton-proton collision data collected at center-of-mass energy sqrt(s) = 8 TeV with the CMS detector in 2012, corresponding to an integrated luminosity of 19.5 inverse femtobarns. The observed event rates are in agreement with expectations from the standard model. These results probe charginos and neutralinos with masses up to 720 GeV, and sleptons up to 260 GeV, depending on the model details.

Journal ArticleDOI
S. Chatrchyan1, Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1  +2280 moreInstitutions (177)
TL;DR: In this paper, a search for a standard model Higgs boson decaying into a pair of tau leptons is performed using events recorded by the CMS experiment at the LHC in 2011 and 2012.
Abstract: A search for a standard model Higgs boson decaying into a pair of tau leptons is performed using events recorded by the CMS experiment at the LHC in 2011 and 2012. The dataset corresponds to an integrated luminosity of 4.9 inverse femtobarns at a centre-of-mass energy of 7 TeV and 19.7 inverse femtobarns at 8 TeV. Each tau lepton decays hadronically or leptonically to an electron or a muon, leading to six different final states for the tau-lepton pair, all considered in this analysis. An excess of events is observed over the expected background contributions, with a local significance larger than 3 standard deviations for m[H] values between 115 and 130 GeV. The best fit of the observed H to tau tau signal cross section for m[H] = 125 GeV is 0.78 +- 0.27 times the standard model expectation. These observations constitute evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons.

Journal ArticleDOI
TL;DR: In this paper, the authors present a typology of potential interactions between public and private land use policy instruments that regulate land use and explore interactions between the new demand-led interventions and formal regulatory public policies.
Abstract: Land use is regulated through various mixes of command-and-control interventions that directly affect land use via land use restrictions, and other public interventions that indirectly affect land use via agricultural, forestry, trade or macro-economic policies. More recently, coalitions of public and private actors have designed market-based and/or demand-led policy instruments to influence land use—e.g., eco-certification, geographical indications, commodity roundtables, moratoria, and payments for environmental services. These innovative instruments fall along a continuum of state involvement and interact with traditional public forms of land use regulation, leading to “hybrid” interventions. This article reviews emerging evidence on the effectiveness of the main instruments used to promote sustainable land use, and explores interactions between the new demand-led interventions and formal regulatory public policies. Although there are still insufficient rigorous studies evaluating the effectiveness of hybrid instruments, available evidence suggests some positive direct and indirect benefits. Hybrid instruments combine elements from both private and public regulatory systems, in innovative and effective ways. We propose a typology to characterize potential interactions between instruments that regulate land use. It links various types of interactions—i.e., complementarity, substitution, and antagonism—to the various stages of regulatory processes—i.e., agenda setting, implementation, and monitoring and enforcement. We give examples of governments endorsing certifications or using certification to support their own policies; governments creating enabling conditions for hybrid instruments to mature, allowing for wider adoption; and private instruments reinforcing public regulations or substituting for missing or weak governance. In some cases, governments, NGOs and corporations compete and may hinder each other's actions. With favourable institutional and governance contexts, well-designed hybrid public-private instruments can be effective. More systematic evaluation could boost the effectiveness of instruments and enhance synergistic interaction with traditional public land-use policy instruments to achieve incremental benefits as well as longer-term transformative outcomes in land-use protection.

Journal ArticleDOI
TL;DR: In this paper, a search for new physics in multijet events with large missing transverse momentum produced in proton-proton collisions at 8 TeV using a data sample corresponding to an integrated luminosity of 19.5 inverse femtobarns collected with the CMS detector at the LHC.
Abstract: A search for new physics is performed in multijet events with large missing transverse momentum produced in proton-proton collisions at sqrt(s)=8 TeV using a data sample corresponding to an integrated luminosity of 19.5 inverse femtobarns collected with the CMS detector at the LHC. The data sample is divided into three jet multiplicity categories (3-5, 6-7, and 8 or more jets), and studied further in bins of two variables: the scalar sum of jet transverse momenta and the missing transverse momentum. The observed numbers of events in various categories are consistent with backgrounds expected from standard model processes. Exclusion limits are presented for several simplified supersymmetric models of squark or gluino pair production.

Journal ArticleDOI
TL;DR: In this paper, a search for the standard model Higgs boson decaying to bb¯ when produced in association with a weak vector boson (V) is reported for the following channels: W(μν)H, W(eν), W(τν), H, Z(μμ), Z(ee, H, and Z(νν), where the search is performed in data samples corresponding to integrated luminosities of up to 5.1 inverse femtobarns at s√=7
Abstract: A search for the standard model Higgs boson (H) decaying to bb¯ when produced in association with a weak vector boson (V) is reported for the following channels: W(μν)H, W(eν)H, W(τν)H, Z(μμ)H, Z(ee)H, and Z(νν)H. The search is performed in data samples corresponding to integrated luminosities of up to 5.1 inverse femtobarns at s√=7 TeV and up to 18.9 fb−1 at s√=8 TeV, recorded by the CMS experiment at the LHC. An excess of events is observed above the expected background with a local significance of 2.1 standard deviations for a Higgs boson mass of 125 GeV, consistent with the expectation from the production of the standard model Higgs boson. The signal strength corresponding to this excess, relative to that of the standard model Higgs boson, is 1.0±0.5.

Journal ArticleDOI
17 Jan 2014
TL;DR: In this article, a search for the standard model Higgs boson decaying to a W-boson pair at the LHC is reported, and an excess of events above background is observed.
Abstract: A search for the standard model Higgs boson decaying to a W-boson pair at the LHC is reported. The event sample corresponds to an integrated luminosity of 4.9 fb−1 and 19.4 fb−1 collected with the CMS detector in pp collisions at s√ = 7 and 8 TeV, respectively. The Higgs boson candidates are selected in events with two or three charged leptons. An excess of events above background is observed, consistent with the expectation from the standard model Higgs boson with a mass of around 125 GeV. The probability to observe an excess equal or larger than the one seen, under the background-only hypothesis, corresponds to a significance of 4.3 standard deviations for m H = 125.6 GeV. The observed signal cross section times the branching fraction to WW for m H = 125.6 GeV is 0.72+0.20−0.18 times the standard model expectation. The spin-parity J P = 0+ hypothesis is favored against a narrow resonance with J P = 2+ or J P = 0− that decays to a W-boson pair. This result provides strong evidence for a Higgs-like boson decaying to a W-boson pair.

Journal ArticleDOI
TL;DR: The number of exosomes present in the maternal plasma increased significantly with gestational age across the first trimester of pregnancy, and this study is a baseline that provides an ideal starting point for developing early detection method for women who subsequently develop pregnancy complications.
Abstract: Human placenta releases specific nanovesicles (i.e. exosomes) into the maternal circulation during pregnancy, however, the presence of placenta-derived exosomes in maternal blood during early pregnancy remains to be established. The aim of this study was to characterise gestational age related changes in the concentration of placenta-derived exosomes during the first trimester of pregnancy (i.e. from 6 to 12 weeks) in plasma from women with normal pregnancies. A time-series experimental design was used to establish pregnancy-associated changes in maternal plasma exosome concentrations during the first trimester. A series of plasma were collected from normal healthy women (10 patients) at 6, 7, 8, 9, 10, 11 and 12 weeks of gestation (n = 70). We measured the stability of these vesicles by quantifying and observing their protein and miRNA contents after the freeze/thawing processes. Exosomes were isolated by differential and buoyant density centrifugation using a sucrose continuous gradient and characterised by their size distribution and morphology using the nanoparticles tracking analysis (NTA; Nanosight™) and electron microscopy (EM), respectively. The total number of exosomes and placenta-derived exosomes were determined by quantifying the immunoreactive exosomal marker, CD63 and a placenta-specific marker (Placental Alkaline Phosphatase PLAP). These nanoparticles are extraordinarily stable. There is no significant decline in their yield with the freeze/thawing processes or change in their EM morphology. NTA identified the presence of 50–150 nm spherical vesicles in maternal plasma as early as 6 weeks of pregnancy. The number of exosomes in maternal circulation increased significantly (ANOVA, p = 0.002) with the progression of pregnancy (from 6 to 12 weeks). The concentration of placenta-derived exosomes in maternal plasma (i.e. PLAP+) increased progressively with gestational age, from 6 weeks 70.6 ± 5.7 pg/ml to 12 weeks 117.5 ± 13.4 pg/ml. Regression analysis showed that weeks is a factor that explains for >70% of the observed variation in plasma exosomal PLAP concentration while the total exosome number only explains 20%. During normal healthy pregnancy, the number of exosomes present in the maternal plasma increased significantly with gestational age across the first trimester of pregnancy. This study is a baseline that provides an ideal starting point for developing early detection method for women who subsequently develop pregnancy complications, clinically detected during the second trimester. Early detection of women at risk of pregnancy complications would provide an opportunity to develop and evaluate appropriate intervention strategies to limit acute adverse sequel.

Journal ArticleDOI
06 Jun 2014-PLOS ONE
TL;DR: Changes in exosome profile may be of clinical utility in the diagnosis of placental dysfunction because pregnancy is associated with a dramatic increase in the number of exosomes present in plasma and maternal plasmaExosomes are bioactive.
Abstract: Studies completed to date provide persuasive evidence that placental cell-derived exosomes play a significant role in intercellular communication pathways that potentially contribute to placentation and development of materno-fetal vascular circulation. The aim of this study was to establish the gestational-age release profile and bioactivity of placental cell-derived exosome in maternal plasma. Plasma samples (n = 20 per pregnant group) were obtained from non-pregnant and pregnant women in the first (FT, 6-12 weeks), second (ST, 22-24 weeks) and third (TT, 32-38 weeks) trimester. The number of exosomes and placental exosome contribution were determined by quantifying immunoreactive exosomal CD63 and placenta-specific marker (PLAP), respectively. The effect of exosomes isolated from FT, ST and TT on endothelial cell migration were established using a real-time, live-cell imaging system (Incucyte). Exosome plasma concentration was more than 50-fold greater in pregnant women than in non-pregnant women (p<0.001). During normal healthy pregnancy, the number of exosomes present in maternal plasma increased significantly with gestational age by more that two-fold (p<0.001). Exosomes isolated from FT, ST and TT increased endothelial cell migration by 1.9±0.1, 1.6±0.2 and 1.3 60.1-fold, respectively compared to the control. Pregnancy is associated with a dramatic increase in the number of exosomes present in plasma and maternal plasma exosomes are bioactive. While the role of placental cell-derived exosome in regulating maternal and/or fetal vascular responses remains to be elucidated, changes in exosome profile may be of clinical utility in the diagnosis of placental dysfunction.


Journal ArticleDOI
28 Jan 2014
TL;DR: It is important to thoroughly understand the pathophysiologic interconnections underlying PCOS, in order to provide superior therapeutic strategies and warrant improved quality of life to women with this syndrome.
Abstract: Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine-metabolic disorder that implies various severe consequences to female health, including alarming rates of infertility. Although its exact etiology remains elusive, it is known to feature several hormonal disturbances, including hyperandrogenemia, insulin resistance (IR), and hyperinsulinemia. Insulin appears to disrupt all components of the hypothalamus-hypophysis-ovary axis, and ovarian tissue insulin resistance results in impaired metabolic signaling but intact mitogenic and steroidogenic activity, favoring hyperandrogenemia, which appears to be the main culprit of the clinical picture in PCOS. In turn, androgens may lead back to IR by increasing levels of free fatty acids and modifying muscle tissue composition and functionality, perpetuating this IR-hyperinsulinemia-hyperandrogenemia cycle. Nonobese women with PCOS showcase several differential features, with unique biochemical and hormonal profiles. Nevertheless, lean and obese patients have chronic inflammation mediating the long term cardiometabolic complications and comorbidities observed in women with PCOS, including dyslipidemia, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. Given these severe implications, it is important to thoroughly understand the pathophysiologic interconnections underlying PCOS, in order to provide superior therapeutic strategies and warrant improved quality of life to women with this syndrome.

Journal ArticleDOI
Edward T. A. Mitchard1, Ted R. Feldpausch2, Ted R. Feldpausch3, Roel J. W. Brienen3, Gabriela Lopez-Gonzalez3, Abel Monteagudo, Timothy R. Baker3, Simon L. Lewis3, Simon L. Lewis4, Jon Lloyd5, Carlos A. Quesada6, Manuel Gloor3, Hans ter Steege7, Hans ter Steege8, Patrick Meir9, Patrick Meir1, Esteban Álvarez, Alejandro Araujo-Murakami10, Luiz E. O. C. Aragão11, Luiz E. O. C. Aragão2, Luzmila Arroyo10, Gerardo Aymard, Olaf Bánki12, Damien Bonal13, Sandra Brown, Foster Brown14, Foster Brown15, Carlos Cerón16, Victor Chama Moscoso, Jérôme Chave17, James A. Comiskey18, Fernando Cornejo19, Massiel Corrales Medina, Lola da Costa, Flávia R. C. Costa6, Anthony Di Fiore20, Tomas F. Domingues21, Terry L. Erwin22, Todd Frederickson23, Niro Higuchi6, Eurídice N. Honorio Coronado3, Timothy J. Killeen24, William F. Laurance25, Carolina Levis6, William E. Magnusson6, Beatriz Schwantes Marimon26, Ben Hur Marimon Junior26, Irina Mendoza Polo, Piyush Mishra27, Marcelo Trindade Nascimento, David A. Neill, Mario Percy Núñez Vargas28, Walter A. Palacios, Alexander Parada10, Guido Pardo Molina, Marielos Peña-Claros29, Nigel C. A. Pitman30, Carlos A. Peres31, Lourens Poorter29, Adriana Prieto32, Hirma Ramírez-Angulo33, Zorayda Restrepo Correa, Anand Roopsind34, Katherine H Roucoux3, Agustín Rudas32, Rafael de Paiva Salomão35, Juliana Schietti6, Marcos Silveira14, Priscila Souza6, Marc K. Steininger36, Juliana Stropp, John Terborgh30, Raquel Thomas37, Marisol Toledo10, Armando Torres-Lezama33, Tinde van Andel8, Geertje M. F. van der Heijden38, Geertje M. F. van der Heijden39, Ima Célia Guimarães Vieira35, Simone Aparecida Vieira40, Emilio Vilanova-Torre33, Vincent A. Vos, Ophelia Wang41, Charles E. Zartman6, Yadvinder Malhi42, Oliver L. Phillips3 
TL;DR: Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases and carbon accounting techniques must be revised to account for the known ecological variation in tree wood density and allometry.
Abstract: Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Location Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/

Journal ArticleDOI
10 Sep 2014-PLOS ONE
TL;DR: The results, at a spatial scale and resolution unprecedented for a Neotropical vertebrate, confirm that widespread amphibian species occur in lowland South America, yet at the same time a large proportion of cryptic diversity still remains to be discovered.
Abstract: Species distributed across vast continental areas and across major biomes provide unique model systems for studies of biotic diversification, yet also constitute daunting financial, logistic and political challenges for data collection across such regions. The tree frog Dendropsophus minutus (Anura: Hylidae) is a nominal species, continentally distributed in South America, that may represent a complex of multiple species, each with a more limited distribution. To understand the spatial pattern of molecular diversity throughout the range of this species complex, we obtained DNA sequence data from two mitochondrial genes, cytochrome oxidase I (COI) and the 16S rhibosomal gene (16S) for 407 samples of D. minutus and closely related species distributed across eleven countries, effectively comprising the entire range of the group. We performed phylogenetic and spatially explicit phylogeographic analyses to assess the genetic structure of lineages and infer ancestral areas. We found 43 statistically supported, deep mitochondrial lineages, several of which may represent currently unrecognized distinct species. One major clade, containing 25 divergent lineages, includes samples from the type locality of D. minutus. We defined that clade as the D. minutus complex. The remaining lineages together with the D. minutus complex constitute the D. minutus species group. Historical analyses support an Amazonian origin for the D. minutus species group with a subsequent dispersal to eastern Brazil where the D. minutus complex originated. According to our dataset, a total of eight mtDNA lineages have ranges >100,000 km2. One of them occupies an area of almost one million km2 encompassing multiple biomes. Our results, at a spatial scale and resolution unprecedented for a Neotropical vertebrate, confirm that widespread amphibian species occur in lowland South America, yet at the same time a large proportion of cryptic diversity still remains to be discovered.

Journal ArticleDOI
S. Chatrchyan1, Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1  +2230 moreInstitutions (144)
TL;DR: The observed (expected) upper limit on the invisible branching fraction at 0.58 (0.44) is interpreted in terms of a Higgs-portal model of dark matter interactions.
Abstract: A search for invisible decays of Higgs bosons is performed using the vector boson fusion and associated ZH production modes. In the ZH mode, the Z boson is required to decay to a pair of charged leptons or a $b\bar{b}$ quark pair. The searches use the 8 TeV pp collision dataset collected by the CMS detector at the LHC, corresponding to an integrated luminosity of up to 19.7 inverse femtobarns. Certain channels include data from 7 TeV collisions corresponding to an integrated luminosity of 4.9 inverse femtobarns. The searches are sensitive to non-standard-model invisible decays of the recently observed Higgs boson, as well as additional Higgs bosons with similar production modes and large invisible branching fractions. In all channels, the observed data are consistent with the expected standard model backgrounds. Limits are set on the production cross section times invisible branching fraction, as a function of the Higgs boson mass, for the vector boson fusion and ZH production modes. By combining all channels, and assuming standard model Higgs boson cross sections and acceptances, the observed (expected) upper limit on the invisible branching fraction at $m_H$=125 GeV is found to be 0.58 (0.44) at 95% confidence level. We interpret this limit in terms of a Higgs-portal model of dark matter interactions.

Journal ArticleDOI
TL;DR: A backward elimination approach based on successive holdout steps, whose contribution measure is based on a balanced loss function obtained on an independent subset, to address high dimensionality as well as class-imbalance issues.

Posted Content
TL;DR: Simultaneous detection and segmentation (SDS) as mentioned in this paper detects all instances of a category in an image and, for each instance, marks the pixels that belong to it.
Abstract: We aim to detect all instances of a category in an image and, for each instance, mark the pixels that belong to it. We call this task Simultaneous Detection and Segmentation (SDS). Unlike classical bounding box detection, SDS requires a segmentation and not just a box. Unlike classical semantic segmentation, we require individual object instances. We build on recent work that uses convolutional neural networks to classify category-independent region proposals (R-CNN [16]), introducing a novel architecture tailored for SDS. We then use category-specific, top- down figure-ground predictions to refine our bottom-up proposals. We show a 7 point boost (16% relative) over our baselines on SDS, a 5 point boost (10% relative) over state-of-the-art on semantic segmentation, and state-of-the-art performance in object detection. Finally, we provide diagnostic tools that unpack performance and provide directions for future work.

Journal ArticleDOI
TL;DR: A search for neutral Higgs bosons in the minimal supersymmetric extension of the standard model (MSSM) decaying to tau-lepton pairs in pp collisions is performed, using events recorded by the CMS experiment at the LHC.
Abstract: A search for neutral Higgs bosons in the minimal supersymmetric extension of the standard model (MSSM) decaying to tau-lepton pairs in pp collisions is performed, using events recorded by the CMS experiment at the LHC. The dataset corresponds to an integrated luminosity of 24.6 fb^(−1), with 4.9 fb^(−1) at 7 TeV and 19.7 fb^(−1) at 8 TeV. To enhance the sensitivity to neutral MSSM Higgs bosons, the search includes the case where the Higgs boson is produced in association with a b-quark jet. No excess is observed in the tau-lepton-pair invariant mass spectrum. Exclusion limits are presented in the MSSM parameter space for different benchmark scenarios, m_h^(max), m_h^(mod)_ +, m_h^(mod)_ -, light-stop, light-stau, τ-phobic, and low-m_H. Upper limits on the cross section times branching fraction for gluon fusion and b-quark associated Higgs boson production are also given.

Journal ArticleDOI
TL;DR: In this article, a search for the standard model Higgs boson produced in association with a top-quark pair (ttH) is presented, using data samples corresponding to integrated luminosities of up to 5.1 fb^(−1) and 19.7 fb+1, collected in pp collisions at center of mass energies of 7 TeV and 8 TeV respectively.
Abstract: A search for the standard model Higgs boson produced in association with a top-quark pair (ttH) is presented, using data samples corresponding to integrated luminosities of up to 5.1 fb^(−1) and 19.7 fb^(−1) collected in pp collisions at center-of-mass energies of 7 TeV and 8 TeV respectively. The search is based on the following signatures of the Higgs boson decay: H → hadrons, H → photons, and H → leptons. The results are characterized by an observed ttH signal strength relative to the standard model cross section, μ=σ/σ SM,under the assumption that the Higgs boson decays as expected in the standard model. The best fit value is μ = 2.8 ± 1.0 for a Higgs boson mass of 125.6 GeV.

Journal ArticleDOI
TL;DR: In this paper, the fractional transverse momentum radial distribution (FTSR) is defined as the radial distribution of the jets produced in heavy-ion collisions and the first measurement of jet shapes is presented.

Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam  +2124 moreInstitutions (141)
TL;DR: A search for heavy, right-handed neutrinos in the left-right symmetric extensions of the standard model was performed by the CMS experiment as discussed by the authors, and the search was based on a sample of two lepton plus two jet events collected in proton-proton collisions at a center-of-mass energy of 8.7 �
Abstract: A search for heavy, right-handed neutrinos, $$\mathrm {N}_{\ell }$$ ( $$\ell = \mathrm {e}, \mu $$ ), and right-handed $$\mathrm {W}_{\mathrm {R}}$$ bosons, which arise in the left-right symmetric extensions of the standard model, has been performed by the CMS experiment. The search was based on a sample of two lepton plus two jet events collected in proton–proton collisions at a center-of-mass energy of 8 $$\,\text {TeV}$$ corresponding to an integrated luminosity of 19.7 $$\mathrm{fb}^{-1}$$ . For models with strict left-right symmetry, and assuming only one $$\mathrm {N}_{\ell }$$ flavor contributes significantly to the $$\mathrm {W}_{\mathrm {R}}$$ decay width, the region in the two-dimensional $$(M_{\mathrm {W}_{\mathrm {R}}}, M_{\mathrm {N}_{\ell }})$$ mass plane excluded at a 95 % confidence level extends to approximately $$M_{\mathrm {W}_{\mathrm {R}}} = 3.0\,\text {TeV} $$ and covers a large range of neutrino masses below the $$\mathrm {W}_{\mathrm {R}}$$ boson mass, depending on the value of $$M_{\mathrm {W}_{\mathrm {R}}}$$ . This search significantly extends the $$(M_{\mathrm {W}_{\mathrm {R}}}, M_{\mathrm {N}_{\ell }})$$ exclusion region beyond previous results.

Journal ArticleDOI
05 Feb 2014
TL;DR: In this paper, a search is performed for a massive vector-like quark T, with charge 2/3, that is pair produced together with its antiparticle in proton-proton collisions.
Abstract: A search is performed for a massive new vector-like quark T, with charge (2/3), that is pair produced together with its antiparticle in proton–proton collisions. The data were collected by the CMS experiment at the Large Hadron Collider in 2012 at √s = 8 TeV and correspond to an integrated luminosity of 19.5 fb^(−1). The T quark is assumed to decay into three different final states, bW, tZ, and tH. The search is carried out using events with at least one isolated lepton. No deviations from standard model expectations are observed, and lower limits are set on the T quark mass at 95% confidence level. The lower limit lies between 687 and 782 GeV for all possible values of the branching fractions into the three different final states assuming strong production. These limits are the most stringent constraints to date on the existence of such a quark.