scispace - formally typeset
Search or ask a question
Institution

University of Luxembourg

EducationLuxembourg, Luxembourg
About: University of Luxembourg is a education organization based out in Luxembourg, Luxembourg. It is known for research contribution in the topics: Context (language use) & Computer science. The organization has 4744 authors who have published 22175 publications receiving 381824 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that piggybacking operations not only concern app code, but also extensively manipulates app resource files, largely contradicting common beliefs.
Abstract: The Android packaging model offers ample opportunities for malware writers to piggyback malicious code in popular apps, which can then be easily spread to a large user base. Although recent research has produced approaches and tools to identify piggybacked apps, the literature lacks a comprehensive investigation into such phenomenon. We fill this gap by: 1) systematically building a large set of piggybacked and benign apps pairs, which we release to the community; 2) empirically studying the characteristics of malicious piggybacked apps in comparison with their benign counterparts; and 3) providing insights on piggybacking processes. Among several findings providing insights analysis techniques should build upon to improve the overall detection and classification accuracy of piggybacked apps, we show that piggybacking operations not only concern app code, but also extensively manipulates app resource files, largely contradicting common beliefs. We also find that piggybacking is done with little sophistication, in many cases automatically, and often via library code.

156 citations

Journal ArticleDOI
TL;DR: This review attempts to summarize the current understanding of liquid crystals in spherical and cylindrical geometry, the state of the art of producing such samples, as well as the perspectives for innovative applications that have been put forward.
Abstract: The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of liquid crystals in spherical and cylindrical geometry, the state of the art of producing such samples, as well as the perspectives for innovative applications that have been put forward.

156 citations

Journal ArticleDOI
TL;DR: Cheminformatics and in vitro screening tests could be used as first approach to identify eco-neurotoxic pollutants and a small species test battery could be applied to assess the risks of ecosystems.
Abstract: The numbers of potential neurotoxicants in the environment are raising and pose a great risk for humans and the environment. Currently neurotoxicity assessment is mostly performed to predict and prevent harm to human populations. Despite all the efforts invested in the last years in developing novel in vitro or in silico test systems, in vivo tests with rodents are still the only accepted test for neurotoxicity risk assessment in Europe. Despite an increasing number of reports of species showing altered behaviour, neurotoxicity assessment for species in the environment is not required and therefore mostly not performed. Considering the increasing numbers of environmental contaminants with potential neurotoxic potential, eco-neurotoxicity should be also considered in risk assessment. In order to do so novel test systems are needed that can cope with species differences within ecosystems. In the field, online-biomonitoring systems using behavioural information could be used to detect neurotoxic effects and effect-directed analyses could be applied to identify the neurotoxicants causing the effect. Additionally, toxic pressure calculations in combination with mixture modelling could use environmental chemical monitoring data to predict adverse effects and prioritize pollutants for laboratory testing. Cheminformatics based on computational toxicological data from in vitro and in vivo studies could help to identify potential neurotoxicants. An array of in vitro assays covering different modes of action could be applied to screen compounds for neurotoxicity. The selection of in vitro assays could be guided by AOPs relevant for eco-neurotoxicity. In order to be able to perform risk assessment for eco-neurotoxicity, methods need to focus on the most sensitive species in an ecosystem. A test battery using species from different trophic levels might be the best approach. To implement eco-neurotoxicity assessment into European risk assessment, cheminformatics and in vitro screening tests could be used as first approach to identify eco-neurotoxic pollutants. In a second step, a small species test battery could be applied to assess the risks of ecosystems.

156 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the relationship between stress and flow-experience with the help of psychophysiological arousal indicators and found an inverted u-shaped relationship of flow experience with indices of sympathetic arousal and cortisol, whereas parasympathetic indices of heart rate control during stress were linearly and positively correlated with flow experience.

156 citations

Journal ArticleDOI
TL;DR: A large body of recent data and literature suggests that tumour progression and phenotype switching could be better controlled and development of resistance prevented or at least delayed, by combining drugs targeting fast- and slow-proliferating cells.

156 citations


Authors

Showing all 4893 results

NameH-indexPapersCitations
Jun Wang1661093141621
Leroy Hood158853128452
Andreas Heinz108107845002
Philippe Dubois101109848086
John W. Berry9735152470
Michael Müller9133326237
Bart Preneel8284425572
Bjorn Ottersten81105828359
Sander Kersten7924623985
Alexandre Tkatchenko7727126863
Rudi Balling7523819529
Lionel C. Briand7538024519
Min Wang7271619197
Stephen H. Friend7018453422
Ekhard K. H. Salje7058119938
Network Information
Related Institutions (5)
Royal Institute of Technology
68.4K papers, 1.9M citations

90% related

University of York
56.9K papers, 2.4M citations

90% related

ETH Zurich
122.4K papers, 5.1M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202360
2022250
20211,671
20201,776
20191,710
20181,663