scispace - formally typeset
Search or ask a question
Institution

University of Macau

EducationMacao, Macau, China
About: University of Macau is a education organization based out in Macao, Macau, China. It is known for research contribution in the topics: Population & Control theory. The organization has 6636 authors who have published 18324 publications receiving 327384 citations. The organization is also known as: UM & UMAC.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an improved HS-SMA hybrid solution is proposed to overcome a major issue identified from the parametric study, i.e., shear slippage, and an analytical model is also developed for normal design of such connections.

102 citations

Journal ArticleDOI
TL;DR: Molecular docking analysis suggested that compound 1 might putatively function as an inhibitor of STAT3 dimerization by binding to the SH2 domain, which validates the use of in silico techniques to identify inhibitors of protein–protein interactions, which are typically considered difficult to target with small molecules.
Abstract: STAT3 regulates a variety of genes involved with cell proliferation, differentiation, apoptosis, angiogenesis, metastasis, inflammation, and immunity. The purpose of this study was to apply molecular docking techniques to identify STAT3 inhibitors from a database of over 90 000 natural product and natural product-like compounds. The virtual screening campaign furnished 14 hit compounds, from which compound 1 emerged as a top candidate. Compound 1 inhibited STAT3 DNA-binding activity in vitro and attenuated STAT3-directed transcription in cellulo with selectivity over STAT1 and with comparable potency to the well-known STAT3 inhibitor S3I-201. Furthermore, compound 1 inhibited STAT3 dimerization and decreased STAT3 phosphorylation in cells without affecting STAT1 dimerization and phosphorylation. Compound 1 also exhibited selective anti-proliferative activity against cancer cells over normal cells in vitro. Molecular docking analysis suggested that compound 1 might putatively function as an inhibitor of STAT3 dimerization by binding to the SH2 domain. This study also validates the use of in silico techniques to identify inhibitors of protein–protein interactions, which are typically considered difficult to target with small molecules.

102 citations

Journal ArticleDOI
TL;DR: In this paper, a conceptual framework that links combinations of ventures' (1) technological, (2) financial, and (3) networking capabilities to different growth strategies in terms of organic growth, partnership, and acquisition was developed.

102 citations

Journal ArticleDOI
TL;DR: A G-quadruplex-based detection system for the detection of insulin as a "proof-of-principle" concept that is easy operated, quick, and cost-effective and could work effectively in diluted human serum.
Abstract: In this study, an unreported Ir(III) complex 1 was identified by screening as a versatile G-quadruplex probe. It exhibited highly selective response for different G-quadruplex DNA over double strand, single strand and triplex DNA. Compared with the organic G-quadruplex probe thioflavin T, complex 1 displays a longer lifetime, a larger Stokes shift, comparable G-quadruplex/ssDNA enhancement ratios, and higher G-quadruplex/triplex DNA enhancement ratios. In consideration of the encouraging G-quadruplex probe performance of complex 1, we employed 1 to develop a G-quadruplex-based detection system for the detection of insulin as a “proof-of-principle” concept. We also demonstrate an optimization process that enhanced the sensitivity of this sensing assay. Compared to previously reported methods, our “mix-and-detect” detection methodology is easy operated, quick, and cost-effective. A detection limit as low as 80 pM for insulin can be achieved by this sensing approach, with a linear relationship between lumine...

102 citations

Journal ArticleDOI
TL;DR: A smart nanotherapy developed, which can release packaged Ac2‐26, in response to highly expressed reactive oxygen species (ROS) at diseased sites, reduces symptoms of inflammation, accelerates intestinal mucosal wound healing, reshapes the gut microbiota composition, and increases short‐chain fatty acid production.
Abstract: The incidence and prevalence of inflammatory bowel disease (IBD) increases steadily worldwide. There is an urgent need for effective and safe IBD therapies. Accelerated resolution of inflammation is a new strategy for the management of inflammatory diseases. For effective and safe IBD treatment, herein a smart nanotherapy (i.e. oxidation-responsive nanoparticles containing a proresolving annexin A1-mimetic peptide Ac2-26, defined as AON) is developed, which can release packaged Ac2-26, in response to highly expressed reactive oxygen species (ROS) at diseased sites. AON effectively protects Ac2-26 from degradation in the enzyme-rich environment of the gastrointestinal tract. By delivering this nanotherapy to the inflamed colons of mice with IBD, site-specific release and accumulation of Ac2-26 in response to high levels of ROS at the inflammatory sites are achieved. Mechanistically, the Ac2-26-containing, oxidation-labile nanotherapy AON effectively decreases the expression of proinflammatory mediators, attenuates trafficking and infiltration of inflammatory cells, promotes efferocytosis of apoptotic neutrophils, and increases phenotypic switching of macrophages. Therapeutically, AON reduces symptoms of inflammation, accelerates intestinal mucosal wound healing, reshapes the gut microbiota composition, and increases short-chain fatty acid production. Additionally, oral delivery of this nanomedicine shows excellent safety profile in a mouse model, conferring the confidence for further development of a targeted precision therapy for IBD and other inflammatory diseases.

102 citations


Authors

Showing all 6766 results

NameH-indexPapersCitations
Henry T. Lynch13392586270
Chu-Xia Deng12544457000
H. Vincent Poor109211667723
Peng Chen10391843415
George F. Gao10279382219
MengChu Zhou96112436969
Gang Li9348668181
Rob Law8171431002
Zongjin Li8063022103
Han-Ming Shen8023727410
Heng Li7974523385
Lionel M. Ni7546628770
C. L. Philip Chen7448220223
Chun-Su Yuan7239721089
Joao P. Hespanha7241839004
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

94% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

University of Hong Kong
99.1K papers, 3.2M citations

93% related

Zhejiang University
183.2K papers, 3.4M citations

91% related

The Chinese University of Hong Kong
93.6K papers, 3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202345
2022307
20212,579
20202,357
20192,075
20181,714