scispace - formally typeset
Search or ask a question
Institution

University of Macau

EducationMacao, Macau, China
About: University of Macau is a education organization based out in Macao, Macau, China. It is known for research contribution in the topics: Computer science & Population. The organization has 6636 authors who have published 18324 publications receiving 327384 citations. The organization is also known as: UM & UMAC.


Papers
More filters
Journal ArticleDOI
TL;DR: A number of exciting advances in CDPRs are summarized in this paper since it was proposed in the 1980s, which points to a fruitful future both in theory and application.
Abstract: Cable-driven parallel robots (CDPRs) are categorized as a type of parallel manipulators. In CDPRs, flexible cables are used to take the place of rigid links. The particular property of cables provides CDPRs several advantages, including larger workspaces, higher payload-to-weight ratio and lower manufacturing costs rather than rigid-link robots. In this paper, the history of the development of CDPRs is introduced and several successful latest application cases of CDPRs are presented. The theory development of CDPRs is introduced focusing on design, performance analysis and control theory. Research on CDPRs gains wide attention and is highly motivated by the modern engineering demand for large load capacity and workspace. A number of exciting advances in CDPRs are summarized in this paper since it is proposed in the 1980s, which points to a fruitful future both in theory and application. In order to meet the increasing requirements of robot in different areas, future steps foresee more in-depth research and extension applications of CDPRs including intelligent control, composite materials, integrated and reconfigurable design.

100 citations

Journal ArticleDOI
23 Feb 2017-ACS Nano
TL;DR: The design and synthesis of donor-bridge-acceptor-based NIR-fluorescent Pdots with narrow-band emissions, ultrahigh brightness, and large Stokes shifts in the near-infrared (NIR) region are described and are expected to find broad use in a variety of multiplexed biological applications.
Abstract: This article describes the design and synthesis of donor–bridge–acceptor-based semiconducting polymer dots (Pdots) that exhibit narrow-band emissions, ultrahigh brightness, and large Stokes shifts in the near-infrared (NIR) region. We systematically investigated the effect of π-bridges on the fluorescence quantum yields of the donor–bridge–acceptor-based Pdots. The Pdots could be excited by a 488 or 532 nm laser and have a high fluorescence quantum yield of 33% with a Stokes shift of more than 200 nm. The emission full width at half-maximum of the Pdots can be as narrow as 29 nm, about 2.5 times narrower than that of inorganic quantum dots at the same emission wavelength region. The average per-particle brightness of the Pdots is at least 3 times larger than that of the commercially available quantum dots. The excellent biocompatibility of these Pdots was demonstrated in vivo, and their specific cellular labeling capability was also approved by different cell lines. By taking advantage of the durable brig...

100 citations

Journal ArticleDOI
TL;DR: In this article, a nearly uncoupled XY micromanipulator designed for micro-positioning uses is presented, and the performance in terms of parasitic motion, cross-talk, lost motion, workspace and resonant frequency have been evaluated via analytical approaches.

100 citations

Posted Content
TL;DR: A large and diverse abdominal CT organ segmentation dataset with more than 1000 (1K) CT scans from 12 medical centers, including multi-phase, multi-vendor, and multi-disease cases is presented and a simple and effective method is developed for each benchmark, which can be used as out-of-the-box methods and strong baselines.
Abstract: With the unprecedented developments in deep learning, automatic segmentation of main abdominal organs seems to be a solved problem as state-of-the-art (SOTA) methods have achieved comparable results with inter-rater variability on many benchmark datasets. However, most of the existing abdominal datasets only contain single-center, single-phase, single-vendor, or single-disease cases, and it is unclear whether the excellent performance can generalize on diverse datasets. This paper presents a large and diverse abdominal CT organ segmentation dataset, termed AbdomenCT-1K, with more than 1000 (1K) CT scans from 12 medical centers, including multi-phase, multi-vendor, and multi-disease cases. Furthermore, we conduct a large-scale study for liver, kidney, spleen, and pancreas segmentation and reveal the unsolved segmentation problems of the SOTA methods, such as the limited generalization ability on distinct medical centers, phases, and unseen diseases. To advance the unsolved problems, we further build four organ segmentation benchmarks for fully supervised, semi-supervised, weakly supervised, and continual learning, which are currently challenging and active research topics. Accordingly, we develop a simple and effective method for each benchmark, which can be used as out-of-the-box methods and strong baselines. We believe the AbdomenCT-1K dataset will promote future in-depth research towards clinical applicable abdominal organ segmentation methods. The datasets, codes, and trained models are publicly available at this https URL.

100 citations

Journal ArticleDOI
01 Jan 2019-Small
TL;DR: Benefiting from the localized therapeutic effect of PDT and hypoxia-activated cytotoxicity of AQ4N, this hybrid nanomedicine exhibits enhanced therapeutic efficacy with negligible systemic toxicity, making it a promising candidate for cancer therapy.
Abstract: During photodynamic therapy (PDT), severe hypoxia often occurs as an undesirable limitation of PDT owing to the O2 -consuming photodynamic process, compromising the effectiveness of PDT. To overcome this problem, several strategies aiming to improve tumor oxygenation are developed. Unlike these traditional approaches, an opposite method combining hypoxia-activated prodrug and PDT may provide a promising strategy for cancer synergistic therapy. In light of this, azido-/photosensitizer-terminated UiO-66 nanoscale metal-organic frameworks (UiO-66-H/N3 NMOFs) which serve as nanocarriers for the bioreductive prodrug banoxantrone (AQ4N) are engineered. Owing to the effective shielding of the nanoparticles, the stability of AQ4N is well preserved, highlighting the vital function of the nanocarriers. By virtue of strain-promoted azide-alkyne cycloaddition, the nanocarriers are further decorated with a dense PEG layer to enhance their dispersion in the physiological environment and improve their therapeutic performance. Both in vitro and in vivo studies reveal that the O2 -depleting PDT process indeed aggravates intracellular/tumor hypoxia that activates the cytotoxicity of AQ4N through a cascade process, consequently achieving PDT-induced and hypoxia-activated synergistic therapy. Benefiting from the localized therapeutic effect of PDT and hypoxia-activated cytotoxicity of AQ4N, this hybrid nanomedicine exhibits enhanced therapeutic efficacy with negligible systemic toxicity, making it a promising candidate for cancer therapy.

100 citations


Authors

Showing all 6766 results

NameH-indexPapersCitations
Henry T. Lynch13392586270
Chu-Xia Deng12544457000
H. Vincent Poor109211667723
Peng Chen10391843415
George F. Gao10279382219
MengChu Zhou96112436969
Gang Li9348668181
Rob Law8171431002
Zongjin Li8063022103
Han-Ming Shen8023727410
Heng Li7974523385
Lionel M. Ni7546628770
C. L. Philip Chen7448220223
Chun-Su Yuan7239721089
Joao P. Hespanha7241839004
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

94% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

University of Hong Kong
99.1K papers, 3.2M citations

93% related

Zhejiang University
183.2K papers, 3.4M citations

91% related

The Chinese University of Hong Kong
93.6K papers, 3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202345
2022307
20212,579
20202,357
20192,075
20181,714