scispace - formally typeset
Search or ask a question
Institution

University of Macau

EducationMacao, Macau, China
About: University of Macau is a education organization based out in Macao, Macau, China. It is known for research contribution in the topics: Computer science & Population. The organization has 6636 authors who have published 18324 publications receiving 327384 citations. The organization is also known as: UM & UMAC.


Papers
More filters
Journal ArticleDOI
TL;DR: Experimental results show that the proposed AI has promising diagnostic performance in the detection of COVID-19 and differentiating it from other common pneumonia under limited number of training data, which has great potential to assist radiologists and physicians in performing a quick diagnosis and mitigate the heavy workload of them especially when the health system is overloaded.
Abstract: The COVID-19 pneumonia is a global threat since it emerged in early December 2019. Driven by the desire to develop a computer-aided system for the rapid diagnosis of COVID-19 to assist radiologists and clinicians to combat with this pandemic, we retrospectively collected 206 patients with positive reverse-transcription polymerase chain reaction (RT-PCR) for COVID-19 and their 416 chest computed tomography (CT) scans with abnormal findings from two hospitals, 412 non-COVID-19 pneumonia and their 412 chest CT scans with clear sign of pneumonia are also retrospectively selected from participating hospitals. Based on these CT scans, we design an artificial intelligence (AI) system that uses a multi-scale convolutional neural network (MSCNN) and evaluate its performance at both slice level and scan level. Experimental results show that the proposed AI has promising diagnostic performance in the detection of COVID-19 and differentiating it from other common pneumonia under limited number of training data, which has great potential to assist radiologists and physicians in performing a quick diagnosis and mitigate the heavy workload of them especially when the health system is overloaded. The data is publicly available for further research at https://data.mendeley.com/datasets/3y55vgckg6/1https://data.mendeley.com/datasets/3y55vgckg6/1.

96 citations

Journal ArticleDOI
TL;DR: This paper investigates a class of elegant multi-objective optimization problems, namely matrix-monotonic optimization problems (MMOPs), and finds that the matrix-variate optimization problems can be greatly simplified into the ones with only vector variables.
Abstract: For MIMO systems, due to the deployment of multiple antennas at both the transmitter and the receiver, the design variables, e.g., precoders, equalizers, and training sequences, are usually matrices. It is well known that matrix operations are usually more complicated compared with their vector counterparts. In order to overcome the high complexity resulting from matrix variables, in this paper, we investigate a class of elegant multi-objective optimization problems, namely matrix-monotonic optimization problems (MMOPs). In our work, various representative MIMO optimization problems are unified into a framework of matrix-monotonic optimization, which includes linear transceiver design, nonlinear transceiver design, training sequence design, radar waveform optimization, the corresponding robust design and so on as its special cases. Then, exploiting the framework of matrix-monotonic optimization the optimal structures of the considered matrix variables can be derived first. Based on the optimal structure, the matrix-variate optimization problems can be greatly simplified into the ones with only vector variables. In particular, the dimension of the new vector variable is equal to the minimum number of columns and rows of the original matrix variable. Finally, we also extend our work to some more general cases with multiple matrix variables.

96 citations

Journal ArticleDOI
TL;DR: The fingerprint can help to distinguish the substitute or adulterant, and further assess the differences of P. cablin grown in various areas of China, was generated using the Computer Aided Similarity Evaluation System.

96 citations

Journal ArticleDOI
TL;DR: This paper introduces a fully efficient approximation algorithm of graph Laplacian, a natural generalization of the standard graph LaPLACian, which significantly saving the computing cost and applies pLapR to support vector machines and kernel least squares and conduct the implementations for scene recognition.
Abstract: The explosive growth of multimedia data on the Internet makes it essential to develop innovative machine learning algorithms for practical applications especially where only a small number of labeled samples are available. Manifold regularized semi-supervised learning (MRSSL) thus received intensive attention recently because it successfully exploits the local structure of data distribution including both labeled and unlabeled samples to leverage the generalization ability of a learning model. Although there are many representative works in MRSSL, including Laplacian regularization (LapR) and Hessian regularization, how to explore and exploit the local geometry of data manifold is still a challenging problem. In this paper, we introduce a fully efficient approximation algorithm of graph ${p}$ -Laplacian, which significantly saving the computing cost. And then we propose ${p}$ -LapR (pLapR) to preserve the local geometry. Specifically, ${p}$ -Laplacian is a natural generalization of the standard graph Laplacian and provides convincing theoretical evidence to better preserve the local structure. We apply pLapR to support vector machines and kernel least squares and conduct the implementations for scene recognition. Extensive experiments on the Scene 67 dataset, Scene 15 dataset, and UC-Merced dataset validate the effectiveness of pLapR in comparison to the conventional manifold regularization methods.

95 citations


Authors

Showing all 6766 results

NameH-indexPapersCitations
Henry T. Lynch13392586270
Chu-Xia Deng12544457000
H. Vincent Poor109211667723
Peng Chen10391843415
George F. Gao10279382219
MengChu Zhou96112436969
Gang Li9348668181
Rob Law8171431002
Zongjin Li8063022103
Han-Ming Shen8023727410
Heng Li7974523385
Lionel M. Ni7546628770
C. L. Philip Chen7448220223
Chun-Su Yuan7239721089
Joao P. Hespanha7241839004
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

94% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

University of Hong Kong
99.1K papers, 3.2M citations

93% related

Zhejiang University
183.2K papers, 3.4M citations

91% related

The Chinese University of Hong Kong
93.6K papers, 3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202345
2022307
20212,579
20202,357
20192,075
20181,714