scispace - formally typeset
Search or ask a question
Institution

University of Macau

EducationMacao, Macau, China
About: University of Macau is a education organization based out in Macao, Macau, China. It is known for research contribution in the topics: Computer science & Population. The organization has 6636 authors who have published 18324 publications receiving 327384 citations. The organization is also known as: UM & UMAC.


Papers
More filters
Journal ArticleDOI
Xiuping Chen1, Jiajie Guo1, Jiaolin Bao1, Jin-Jian Lu1, Yitao Wang1 
TL;DR: A systematic summary of the anticancer profile and the underlying mechanisms of the bioactive compounds isolated from Danshen with special emphasis on tanshinones is provided, aiming to bring new insights for further research and development of this ancient herb.
Abstract: Salvia miltiorrhiza Bunge (Danshen in Chinese) is a classical Huoxue Huayu (a traditional Chinese medical term means promoting blood circulation and removing blood stasis) herb with 1000 years of clinical application. It mainly contains two groups of ingredients: the hydrophilic phenolic acids and the lipophilic tanshinones. Both groups have demonstrated multiple bioactivities, such as antioxidative stress, antiplatelet aggregation, anti-inflammation, among others. Recent data have demonstrated that its lipophilic compounds, especially the tanshinones, show potent anticancer activities both in vitro and in vivo. The anticancer effects of the hydrophilic phenolic acids have also been reported. Furthermore, tanshinones provide structural skeletons for chemical modifications, allowing for a series of derivatives of interests. This review provides a systematic summary of the anticancer profile and the underlying mechanisms of the bioactive compounds isolated from Danshen with special emphasis on tanshinones, aiming to bring new insights for further research and development of this ancient herb.

214 citations

Journal ArticleDOI
TL;DR: These studies were among the first to demonstrate the direct inhibition of protein-protein interfaces by kinetically-inert group 9 metal complexes and discovered that group 9 solvato complexes carrying 2-phenylpyridine coligands could function as inhibitors and probes of β-amyloid fibrillogenesis.
Abstract: CONSPECTUS: Compared with organic small molecules, metal complexes offer several distinct advantages as therapeutic agents or biomolecular probes. Carbon atoms are typically limited to linear, trigonal planar, or tetrahedral geometries, with a maximum of two enantiomers being formed if four different substituents are attached to a single carbon. In contrast, an octahedral metal center with six different substituents can display up to 30 different stereoisomers. While platinum- and ruthenium-based anticancer agents have attracted significant attention in the realm of inorganic medicinal chemistry over the past few decades, group 9 complexes (i.e., iridium and rhodium) have garnered increased attention in therapeutic and bioanalytical applications due to their adjustable reactivity (from kinetically liable to substitutionally inert), high water solubility, stability to air and moisture, and relative ease of synthesis. In this Account, we describe our efforts in the development of group 9 organometallic compounds of general form [M(C(∧)N)2(N(∧)N)] (where M = Ir, Rh) as therapeutic agents against distinct biomolecular targets and as luminescent probes for the construction of oligonucleotide-based assays for a diverse range of analytes. Earlier studies by researchers had focused on organometallic iridium(III) and rhodium(III) half-sandwich complexes that show promising anticancer activity, although their precise mechanisms of action still remain unknown. More recently, kinetically-inert group 9 complexes have arisen as fascinating alternatives to organic small molecules for the specific targeting of enzyme activity. Research in our laboratory has shown that cyclometalated octahedral rhodium(III) complexes were active against Janus kinase 2 (JAK2) or NEDD8-activating enzyme (NAE) activity, or against NO production leading to antivasculogenic activity in cellulo. At the same time, recent interest in the development of small molecules as modulators of protein-protein interactions has stimulated our research group to investigate whether kinetically-inert metal complexes could also be used to target protein-protein interfaces relevant to the pathogenesis of certain diseases. We have recently discovered that cyclometalated octahedral iridium(III) and rhodium(III) complexes bearing C(∧)N ligands based on 2-phenylpyridine could function as modulators of protein-protein interactions, such as TNF-α, STAT3, and mTOR. One rhodium(III) complex antagonized STAT3 activity in vitro and in vivo and displayed potent antitumor activity in a mouse xenograft model of melanoma. Notably, these studies were among the first to demonstrate the direct inhibition of protein-protein interfaces by kinetically-inert group 9 metal complexes. Additionally, we have discovered that group 9 solvato complexes carrying 2-phenylpyridine coligands could function as inhibitors and probes of β-amyloid fibrillogenesis. Meanwhile, the rich photophysical properties of iridium complexes have made them popular tools for the design of luminescent labels and probes. Luminescent iridium(III) complexes benefit from a high quantum yield, responsive emissive properties, long-lived phosphorescence lifetimes, and large Stokes shift values. Over the past few years, our group has developed a number of kinetically-inert, organometallic iridium(III) complexes bearing various C(∧)N and N(∧)N ligands that are selective for G-quadruplex DNA, which is a DNA secondary structure formed from planar stacks of guanine tetrads stabilized by Hoogsteen hydrogen bonding. These complexes were then employed to develop G-quadruplex-based, label-free luminescence switch-on assays for nucleic acids, enzyme activity, small molecules, and metal ions.

214 citations

Journal ArticleDOI
TL;DR: The present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshin one in view of their potentials in cancer therapy.
Abstract: Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.

214 citations

Journal ArticleDOI
TL;DR: A facile method to regenerate NaBH4 with high yield and low costs, which avoids expensive reducing agent such as MgH2, bypasses the energy-intensive dehydration procedure to remove water from Na2B4O7·10H2O, and does not require high-pressure H2 gas, therefore leading to much reduced costs.
Abstract: Sodium borohydride (NaBH4 ) is among the most studied hydrogen storage materials because it is able to deliver high-purity H2 at room temperature with controllable kinetics via hydrolysis; however, its regeneration from the hydrolytic product has been challenging. Now, a facile method is reported to regenerate NaBH4 with high yield and low costs. The hydrolytic product NaBO2 in aqueous solution reacts with CO2 , forming Na2 B4 O7 ⋅10 H2 O and Na2 CO3 , both of which are ball-milled with Mg under ambient conditions to form NaBH4 in high yield (close to 80 %). Compared with previous studies, this approach avoids expensive reducing agents such as MgH2 , bypasses the energy-intensive dehydration procedure to remove water from Na2 B4 O7 ⋅10 H2 O, and does not require high-pressure H2 gas, therefore leading to much reduced costs. This method is expected to effectively close the loop of NaBH4 regeneration and hydrolysis, enabling a wide deployment of NaBH4 for hydrogen storage.

214 citations

Journal ArticleDOI
TL;DR: The experimental results on three real-life HSI data sets show that the proposed semisupervised learning framework, $\text{S}^{2}$ GCN can significantly improve the classification accuracy.
Abstract: Collecting labeled samples is quite costly and time-consuming for hyperspectral image (HSI) classification task. Semisupervised learning framework, which combines the intrinsic information of labeled and unlabeled samples, can alleviate the deficient labeled samples and increase the accuracy of HSI classification. In this letter, we propose a novel semisupervised learning framework that is based on spectral–spatial graph convolutional networks ( $\text{S}^{2}$ GCNs). It explicitly utilizes the adjacency nodes in graph to approximate the convolution. In the process of approximate convolution on graph, the proposed method makes full use of the spatial information of the current pixel. The experimental results on three real-life HSI data sets, i.e., Botswana Hyperion, Kennedy Space Center, and Indian Pines, show that the proposed $\text{S}^{2}$ GCN can significantly improve the classification accuracy. For instance, the overall accuracy on Indian data is increased from 66.8% (GCN) to 91.6%.

212 citations


Authors

Showing all 6766 results

NameH-indexPapersCitations
Henry T. Lynch13392586270
Chu-Xia Deng12544457000
H. Vincent Poor109211667723
Peng Chen10391843415
George F. Gao10279382219
MengChu Zhou96112436969
Gang Li9348668181
Rob Law8171431002
Zongjin Li8063022103
Han-Ming Shen8023727410
Heng Li7974523385
Lionel M. Ni7546628770
C. L. Philip Chen7448220223
Chun-Su Yuan7239721089
Joao P. Hespanha7241839004
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

94% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

University of Hong Kong
99.1K papers, 3.2M citations

93% related

Zhejiang University
183.2K papers, 3.4M citations

91% related

The Chinese University of Hong Kong
93.6K papers, 3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202345
2022307
20212,579
20202,357
20192,075
20181,714